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Application of Mathematical Signal Processing
Techniques to Mission Systems

(RTO EN-7)

Executive Summary

Signal processing techniques must develop substantially, on the one hand in order to respond in a more
relevant way to more demanding operational requirements, and on the other to obtain maximum benefit
from improvements in the technologies on which they are based, whether it be for the sensors which supply
them, or the data processing techniques which enable their implementation.

With regard to sensors in particular, the trend is to use the signal for imaging, at increasingly fine
resolution, with generally much larger fields. Moreover, processing commonly concerns sequences of
images, with close integration of spatial and temporal dimensions. Present day systems in fact tend to
multiply the number of sensors and frequency bands operated in close synergy, leading to multi-resolution
and non-uniform data (reference systems, reliability,...). The data available are thus increasing in volume,
in density and in irregularity, and as a result are becoming more difficult to use.

Operational situations require the generation of increasingly accurate, undeformable and summarised
information, to be generated under more and more difficult conditions with shorter and shorter reaction
times. The data and the interconnections which result from it, must therefore be treated with care, while at
the same time attempting to ensure the highest possible level of automaticity.

There are a number of emerging techniques which could meet these requirements, mostly originating in
mathematical theories as diverse as wavelets, variational methods or the theory of evidence. These
techniques cover the whole processing chain fairly evenly, and in particular signal compression and
transmission, data extraction and interpretation, and decision-making aids.

JUSTIFICATION: The complementarity of the different emerging techniques, presented in the most
varied mathematical frameworks, so as to respond to what is a critical development in sensor system
integration requirements, should produce a series of tools capable of meeting the needs expressed at all
levels of the processing chain.

SUBJECTS EXAMINED: This Lecture Series presents a whole range of perspectives for different levels
of processing, based on some of the most promising techniques. Particular attention will be paid to the
following subjects:

— Wavelet analysis: summary of the possibilities; application to detection in natural background radiation
and extraction of primitive invariants.

— The concept of Multirate Filter Banks in conjunction with the various transforms which this technique
enables; applications to compressed video image and sequence transmission, to noise rejection, to
jamming and to encoding.

— Variational methods based on partial derivative equations for image processing and multi-scale video
sequences; presentation of different image segmentation approaches.

— Multi-sensor processing based on the theory of evidence: processing of the functions of detection,
classification, matching of ambiguous observations, or tracking, with the aim of solving problems such
as data modelling, decision making, the management of non-uniform reference systems, or the
integration of contextual knowledge.

The material in this publication was assembled to support a Lecture Series under the sponsorship of the
Systems Concepts and Integration Panel (SCI) and the Consultant and Exchange Programme of RTA
presented on 1-2 November 1999 at DLR Koln, Germany, on 4-5 November 1999 at ONERA, Paris,
France, and 9-10 November 1999 at the Naval Post Graduate School, Monterey, United States.
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L’application des techniques mathématiques
du traitement du signal aux systemes
de conduite des missions

(RTO EN-7)

Synthese

Les techniques de traitement du signal doivent évoluer de fagon substantielle, d’une part pour répondre d’une
facon pertinente a des besoins opérationnels de plus en plus exigeants, et d’autre part pour tirer tout le bénéfice
de I’amélioration des technologies sur lesquelles elles reposent, qu’il s’agisse des senseurs qui les alimentent ou
des moyens informatiques qui permettent leur mise en ceuvre.

Au niveau des senseurs en particulier, le signal évolue de plus en plus vers I’imagerie dont la résolution est de
plus en plus fine pour des champs généralement plus importants. Il faut traiter le plus souvent, des séquences
d’images et ceci en intégrant étroitement leurs dimensions temporelle et spatiale. Les systémes actuels
multiplient de plus le nombre de senseurs et de bandes de fréquence qu’il convient d’exploiter en étroite
synergie, conduisant notamment a des problemes de multi-résolutions et d’hétérogénéit€é des données
(référentiels, fiabilité,...). Les données disponibles croissent donc en volume, en richesse, en hétérogénéité, et en
difficulté d’exploitation.

Les besoins opérationnels requierent par ailleurs 1’élaboration d’informations de plus en plus précises, robustes,
synthétiques, ceci dans des conditions adverses souvent plus difficiles et avec des délais de réaction de plus en
plus courts. Il convient donc d’exploiter de fagon d’autant plus rigoureuse les données et leurs synergies, tout en
cherchant un niveau d’automatisation le plus élevé possible.

Pour faire face A ces besoins, un certain nombre de techniques émergentes et porteuses ont pu étre dégagées a
partir de théories mathématiques aussi variées que les ondelettes, les méthodes variationnelles ou la théorie de
’évidence. Ces techniques couvrent de fagon assez homogene 1’ensemble de la chaine de traitement, notamment
la compression et la transmission des signaux, I’extraction d’information, I’interprétation, et I’aide & la décision.

JUSTIFICATION : Les complémentarités de différentes techniques émergentes et porteuses, élaborées dans
des cadres mathématiques les plus variés pour répondre a une évolution critique des besoins en matiere
d’intégration de systémes de senseurs, permettent d’envisager un ensemble d’outils propres a satisfaire tous les

maillons de la chaine de traitement.

SUJETS A TRAITER : Le cycle de conférences proposé vise a présenter un éventail des perspectives offertes
aux différents niveaux du processus de traitement, en s’appuyant sur quelques techniques parmi les plus
prometteuses. Les sujets suivants seront notamment abordés :

— Analyse par ondelettes : synthése des possibilités offertes ; application a la détection dans des fonds naturels
structurés et a I’extraction de primitives invariantes ;

— Concept de “Multirate Filter Banks” en liaison avec les différentes transformées qu’il permet de mettre en
ceuvre ; applications dans le domaine des transmissions a la compression d’images et de séquences vidéo, a la
réjection de bruit, au brouillage, et au codage ;

— Méthodes variationnelles basées sur les équations aux dérivées partielles pour le traitement d’images et de
séquences vidéo multi-échelles ; présentation de différentes approches en segmentation d’images ;

— Traitements multi-senseurs basés sur la théorie de I’évidence: traitement des fonctions de détection,
classification, mise en correspondance d’observations ambigués, ou pistage, visant a résoudre des problemes
tels que la modélisation des données, la prise de décision, la gestion de référentiels hétérogenes, ou
I’intégration de connaissances contextuelles.

Cette publication a été rédigée pour servir de support de cours pour le Cycle de conférences 216, organisé par la
Commission RTO sur les (SCI) du 1-2 novembre 1999, DLR, (Allemagne) et du 4 au 5 novembre 1999 a
I’ONERA, (France), et du 9 au 10 novembre 1999 a Naval Post Graduate School, Monterey (Etats-Unis).
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Introduction to Wavelet Analysis

G.H.Watson
Room 1052, A2 Building, DERA Farnborough, Ively Road, Farnborough, Hants, GU14 0LX, UK

1. Introduction

This paper introduces the concepts of wavelet analysis
and gives an overview of the numerous wavelet analysis
techniques in existence. The principal aim of this paper
is to promote an awareness of wavelet analysis, not to
provide technical details, as the latter are available in
many textbooks, for example [1,2]. Most of the
underlying principles are applicable to 1-dimensional
signal analysis, and there are straightforward methods to
adapt 1D wavelet analysis to higher-dimensional data,
also covered in this paper. Hence, much of this paper is
concerned with 1-dimensional signal analysis, even
though higher-dimensional data is of equal importance.
Major topics covered in this paper are the continuous
wavelet transform and its inverse, the discrete wavelet
transform and its relation to multiresolution filter banks,
orthonormal and biorthogonal wavelets, image wavelet
analysis and wavelet packets.

We begin in this section with an overview of what
wavelet analysis is, why it is useful, and present some
common applications. Throughout this paper, key words
and phrases are highlighted in bold text.

Wavelet analysis is the extraction of signal or image
information at different positions and scales. The idea is
to treat all positions and scales on an equal footing, so
that an object will be analysed in the same way,
regardless of whether it is translated or dilated. This
approach is useful because translation and dilation are
natural symmetries that occur very often in nature, and
in signal and image processing. If we are looking for an
object, we generally don’t know where it will be, and in
many surveillance applications it is equally likely to be
anywhere in the signal or image. The statistics of the
signal or image are thus translation-invariant, otherwise
known as being stationary. Similarly, if we’re analysing
signals over time, we don’t know when an event will
occur, for example a transient sound in an acoustic
signal.

Scale invariance is also important in signal and image
processing, but the reasons are sometimes less obvious.
Sometimes  scale-invariant processing is required
because the objects being analysed could be at any
range, and therefore of unknown apparent size, or the
camera may have a zoom facility which also dilates the
image. Similarly, sounds such as musical notes may
have variable duration, but in other respects are similar.
What is more subtle and interesting is the invariance of

many natural processes and scenes to dilation. Scenes
such as sky, clouds, mountains and forests are of interest
as backgrounds in surveillance and detection. It should
be obvious that such backgrounds are statistically
independent of translation, as there is no concept of
“absolute” position. This is similar to the underlying
principle of relativity, although the latter concerns the
laws of physics and also invariance to constant velocity
changes.

What is less obvious is that many natural scenes are
scale-invariant; when we observe such scenes as images,
the range or magnification are difficult to discern, unless
there are reference objects of known size. Even many
artefacts, such as roads and buildings, are difficult to
scale. Self-similar objects are known as fractals, and the
study of fractal geometry has been an important topic of
research in recent decades [3], in which scale-invariance
is known as self-similarity. There are many physical
processes which are self-similar, for example turbulence
in fluids, and wavelet analysis has been an important
tool in the analysis of such processes.

There are natural symmetries other than translation and
dilation, which will be mentioned in Sections 7 and 8.
Downward-looking imagery 1is often statistically
rotation-invariant, there being no bias in orientation.
Frequency shifts are a natural symmetry for some types
of noise, for example Gaussian white noise.

Another important requirement of wavelet analysis is
resolution in position and scale, so that objects at
different positions and scales can be analysed
independently, with minimal interference. To achieve
this, an appropriate basis of functions is required for the
analysis. The most primitive basis comprises the delta
functions which return the sample or grey-scale values at
each point or pixel in the signal or image. Delta
functions are best at resolving position but cannot
resolve scale or frequency. Conversely, a Fourier basis,
comprising sinusoids or complex exponentials, is best at
resolving frequency, but cannot resolve position. Neither
of these bases is scale-invariant, which is where wavelet
bases come in, discussed in Section 2.

We conclude this section with some applications of
wavelet analysis, to demonstrate the practical importance
of translation- and scale-invariant processing.

Paper presented at the RTO SCI Lecture Series on “Application of Mathematical Signal Processing Techniques
to Mission Systems”, held in Koln, Germany, 1-2 November 1999; Paris, France, 4-5 November 1999;
Monterey, USA, 9-10 November 1999, and published in RTO EN-7.
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1.1 Data Compression

Data compression is perhaps the most widely used
application of wavelet analysis. Most real-life images
have strong phase correlation, like edges, and are
intermittent, with some parts being smooth and other
parts rough, or with sharp edges. With the delta function
basis there is considerable redundancy in the smooth
parts, as the function values (sample values) are similar,
so smooth regions require a basis of smooth functions to
be encoded efficiently. There is a lot of low-frequency
energy in smooth signals, which suggests that a Fourier
Transform might be more efficient, but sharp edges are a
problem, because they have energy over a wide range of
frequency. Thus we would need to partition the image
into regions each  with separate frequency
decomposition, which leads to windowed Fourier (or
cosine) transforms, for example the discrete cosine
transform (DCT) used in JPEG image compression {4].
A similar technique is used in encoding audio signals in
the form of the Gabor transform or spectrogram [5].
Thus edges can decomposed separately, leaving smooth
regions to be encoded more efficiently.

The windowed Fourier technique is quite effective, but
this type of coding is still limited because a fixed
window size is used. If a large window is used, edges
and high frequency energy are coded badly, because
there is significant leakage into smooth regions, as
windows of fixed size and regular spacing do not usually
fit edges well. If small windows are used, low frequency
smooth regions are coded badly, as there are too many
windows replicating information. What we need is a
variable-scale window, which is where the wavelet
transform comes in. The above coding problems are

caused by a lack of scale invariance, as a fixed window

does not treat different scales alike.

If we use the wavelet transform, the signal or image is
decomposed into a pyramid, each layer having
information at a different scale and level of detail. Each
layer comprises a regular grid, where at each point there
is a wavelet coefficient encoding the information within
the image at that particular position and scale. The grid
spacing is proportional to scale, so a small number of
coefficients is required at large scale and low resolution.
Thus smooth parts of the image are encoded efficiently.
At small scales a large number of coefficients is
required, but in smooth areas these will be low in
magnitude, and can be ignored with minimal loss of
information. Thus we are getting what we want: smooth
regions are encoded with a small number of coefficients,
and other regions, such as edges, are encoded with a
larger number of coefficients. Fig. A gives an example
of image compression using symmetrical Daubechies
wavelets.

Fig. A. Example of wavelet image compression on ‘Lena’

(a) Original image

(b) Image at 27:1 compression

1.2 De-Noising

If a signal or image is corrupted with noise, we wish to
recover as much of the original information as possible
We cannot do a perfect job, because some parts of the
signal will be indistinguishable from noise; they could
have arisen with some probability from the random
process generating the noise. The usual method is to
decompose the signal into a set of functions using a
prescribed basis (in our case using a wavelet basis),
distinguish the components that come from noise from
those that don’t (to some level of confidence), remove
the former, and reconstruct the signal or image from the
latter. The role of the basis is to do the best possible job
of separating the original signal and noise. The best
choice of basis depends both on what we expect to find
in the uncorrupted signal, and on the statistical properties
of the noise.



When the expected signal is self-similar both in position
and scale, the wavelet transform is the obvious method
of decomposition. If we have Gaussian white noise then
it turns out that the resulting wavelet coefficients all
have the same Gaussian distribution, so the natural way
of de-noising is to set a threshold on the amplitudes of
the wavelet coefficients, and to reject (set to zero) all
those below this threshold. If, say, the probability of the
wavelet coefficients from the noise exceeding this
threshold is only 1/1000, then anything remaining is
more than 99.9% likely to come from the signal. There is
a trade-off between missing too much of the signal and
leaving too much of the noise, and the required balance
affects the value of the threshold. Fig. B gives an
example of signal de-noising using wavelet analysis.

Original signal

TN

Noisy signal (SNR=3)}

De-noised signal
10 T T T T T T

°W

-10

" . s " s 2 L " " s
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. B. Example of de-noising of a 1-dimensional signal
using wavelet analysis

1.3 Detection

Finally we briefly consider target and anomaly detection,
which is covered in more detail in [6]. Detection is very
similar to de-noising, except now we may not need to
reconstruct the uncorrupted data. It is therefore often
sufficient to record the position, scale and amplitude of
the wavelet components, and so an inverse to the
wavelet transform is not necessary. This gives us more
flexibility in the choice of the wavelet (or other) basis,
not just in the shape of the functions, but also in their
spacing in positions and scale. Typically we can afford
to choose a higher threshold on the wavelet coefficients,
and to use a denser pyramid, thus over-sampling the
wavelet transform. This extra processing, discussed in
the last two sections, allows better target discrimination,
but can also introduce redundancy in the representation
of the target.

2. Fundamentals: the Continuous Wavelet
Transform

This section introduces wavelet analysis for continuous
functions, where the concepts of translation and dilation
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are clearest. Sections 3—5 cover the analysis of discretely
sampled signals.

2.1 Convolution

The wavelet transform is essentially a multi-scale
convolution of a signal with a filter, called the analysing
wavelet or mother wavelet. First we briefly review
single-scale convolution. Convolution of a signal f with a
filter g is defined as follows:

h=f*g ; h(x)= Jﬂf(u)g(x—u)du (1

where integration is over the space on which the
functions f and g are defined. If f is a function of one
variable, e.g. an acoustic signal is a function of time,
then so must be the filter g, and the integral is one-
dimensional, i.e. on the real line. The convolution output
h is also a function of one variable: x is a scalar quantity.
For image processing f is a function of two variables, so
x and u are vectors, each with two scalar components.
The integral is two-dimensional, i.e. over the image
plane. Convolution can also be done in higher
dimensions, for example when analysing time-sequenced
imagery or medical tomography.

In both cases the underlying principle is the same: we
take a filter function g, reverse it in space or time, and
slide it over the signal f over all positions x, which is
done by translating g, and is why the argument of g
under the integral is x-u, not u. For images the
translation is a vector, allowing the filter to be positioned
anywhere within the image. The value of the convolution
output 4 at x tells us how the signal or image interacts
with the filter at that particular position x.

Convolution is translation invariant; if the signal is
shifted, then the convolution output is shifted by the
same amount. Thus convolution is a natural precursor to
wavelet analysis, suitable for analysing signals with
translation invariance, where the information sought is
equally likely to occur at any position (or time).
However, convolution does not treat scales on an equal
footing; if the signal is dilated, the convolution output is
not dilated or simply related in any other way. Table 1
shows some simple examples of convolution filters.

The top hat is a local average, so it integrates the signal
over an interval of unit length, and the output of A
depends on the starting point. This will be good at
identifying regions in the signal with high (or low) local
average, for example a pulse, but will also respond well
to signals with a high global average, for example a
constant non-zero function. Thus it will be good at
discriminating pulses from the background so long as the
local mean of the latter is always small, which requires
the background to be uncorrelated over lengths
comparable to the scale of the filter, for example zero-
mean white noise. In this case it will be better at picking
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up pulses of approximately unit length than of much
smaller or longer lengths because the signal to noise
ratio is higher. This is the principle behind matched
filters. The important point is that the effectiveness of
the filter depends on the scale of the object it is trying to
detect.

The Gaussian pulse is similar to the top hat, but being
smoother it is less sensitive to high frequencies, and thus
better at picking up smoother objects. The edge detector
is rather different, as it only responds to changes or
gradients within the signal, because anything constant is
cancelled out by the up and down pulses: the filter has
zero-mean. Thus this is a good edge detector, especially
if the background is highly correlated, e.g. Brownian
noise, because, looking for differences only, it ignores
highly correlated regions. The same thing goes for the
Mexican hat or Difference of Gaussian (DoG) filter,
except it is symmetrical, and responds best to 2-sided
edges (filaments in images). Again, there is a scale-
dependence; in Brownian noise these filters respond best
to smooth ramps whose width is approximately unity.

2.2 The Wavelet Transform
The wavelet transform removes this scale-dependence

by repeating the convolution of Equation (1) at multiple
scales, producing a function of position and scale:

wix,s)=s? jf(u)g[x;“]du @)

so that the filter is dilated by a factor s as well as
translated by an offset x. The power of scale in front of
the integral is a normalisation factor similar to the

factors involving m used in the Fourier transform. One
useful property of this normalisation factor, discussed in
Section 8, is that the expected wavelet transform of
white noise is independent of scale. Now all information
is treated similarly, regardless of position and scale. Any
translation and dilation of the signal or image will result
in a similar translation and dilation of the wavelet
transform. The filter g is known as the analysing
wavelet or mother wavelet, and depending on its shape
(e.g. Table 1), the wavelet transform will be good at
detecting top hats, pulses and edges at all positions and
scales.

2.3 Inverse Wavelet Transform and A dmissibility

As you would expect for a useful transform, there is an
inversion formula:

3n
flx)=c” j w(u,s)g{ﬂ]s % duds 3)
R 5
where C is a normalisation constant given by:

c:znj%dw, @

where the hat denotes a Fourier transform and o is
Fourier frequency. This formula is analogous to the
continuous Fourier transform inverse, in that both
transforms look very similar to their inverses, and
indeed, the wavelet inverse is easiest to derive in the
Fourier domain, using the Fourier inversion theorem.
The wavelet transform inverse is more powerful,
because it works for a large family of mother wavelets,
in fact any function g for which the normalisation

Table 1. Example convolution filter functions.

Name Function Approximate shape
( ) 1 0<x<l
X)}=
Top hat 8 0 otherwise

Gaussian pulse g(x)= exp(—— xz)

d 2
Simple edge detector g(x)= e (expl-x ))

8= exol-1*)

Mexican hat (DOG) dx’

VN
J\ﬁ




constant C is finite, whereas the continuous Fourier
transform  involves convolution with  complex
exponentials only. The finiteness of C imposes a
significant constraint on g however, called the
admissibility condition, in particular requiring g to have
zero mean. Thus the inversion formula (3) does not work
with the top hat and Gaussian pulse functions in Table 1.
Many practitioners of wavelet analysis require the
admissibility condition as part of the definition of a
wavelet. However, the wavelet transform (2) still has
meaning, and translation and dilation invariance, even
without this condition; it is mainly when using the
inversion formula (3) that the admissibility condition is
required.

3. Discrete Wavelets and Filter Banks
3.1 The Effects of Sampling

The continuous wavelet transform is sound theoretically,
but it not applicable to signal and image analysis with
digital computers, which require discretely sampled data,
discrete filters, and where integration is replaced with
finite summation. The same argument applies to Fourier
analysis, which is why in practice the discrete Fourier
transform is used, often implemented as the fast Fourier
transform (FFT). Similar implementations have been
developed for wavelet analysis, and there is an elegant
relationship between the continuous and discrete cases,
described in Section 4.

We require discrete equivalents for the operations shown
in Table 2. Dilation is the main cause of difficulty, and
the reason for various complications in the theory of the
discrete wavelet transform, because downsampling and
upsampling are not invertible even though they appear
superficially to be inverses of each other. It is true that
upsampling followed by downsampling is the identity,
leaving the signal unchanged, but if these operations are
applied in the reverse order all the samples whose index
k is not divisible by p are set to zero, and thus
information is lost.

1-5
3.2 Filter Banks and Perfect Reconstruction

We need to avoid losing information, otherwise the
discrete wavelet transform will not be invertible, and the
signal or image would not be fully represented. For this
reason it is necessary to apply more than one discrete
filter to the data, in fact p filters, where p is the
resampling factor. Thus discrete wavelet analysis
involves the application of filter banks. Fig. 1 shows the
process, involving a single dilation and its inverse, in
diagrammatic form.

Analysis Synthesis

signal

Fig. . Signal analysis and synthesis

If the reconstructed signal coming from the synthesis
channel is identical, barring a delay, to the input to the
analysis channel, the filter bank is called a perfect
reconstruction (PR) filter bank. H; are called analysis
filters and F, are called synthesis filters. Both are
discrete, linear and translation invariant (to a resolution
of one sample), and in general are implemented
recursively:

h(n)=zk:a(k)h(n—k)+2b(l)f(n~l) (5)

where the coefficients a(k) and b(l) are finite and their
number defines the order of the filter. All such filters can
be implemented by discrete convolution, where there are
no recursive coefficients a(k), but there may be infinitely
many b(l). The latter may be obtained by applying the
filter to a delta function, or impulse, and hence are

Table 2. Continuous and discrete operation analogues

Continuous Discrete Discrete Formula
Integration Summation za(k)
k
Translation Shift to left or right by fk)— flk-p)
integer p
Dilation Downsampling or f(k) - f(pk)
upsampling by integer factor ) flk/p) ki/p integer
__)
p 0 otherwise
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denoted the impulse response. Where the response is
infinite, the filter is known as infinite impulse response
(IIR), otherwise finite impulse response (FIR).

The other components of the filter bank are to do with
resampling, where \P denotes downsampling, and TP
denotes upsampling, both by a factor of p. Thus this
filter bank has the discrete analogues of both
convolution and dilation, and thus contains all the
ingredients required for wavelet analysis. Most (though
not all) resampling in wavelet analysis is by a factor of
p=2, because like the fast Fourier transform the process
is most efficient this way, so from this point we will
assume p=2.

When designing filters, including PR filters, it is
convenient to use the Z-transform, where the coefficients
a and b are each assembled into a polynomial, and the
transform is the ratio of these polynomials, where the
independent variable is conventionally written as z. In
this representation, the following conditions are
necessary and sufficient for perfect reconstruction:

K, (Z)Hl)(z)+ £ (Z)H| (Z)= 2z
F()(Z)H()(_ Z)"' Fl(Z)H|(— Z)=0 6)

In this notation, multiplication 1is equivalent to
composition of filters, changing the sign of z is
equivalent to reversing the filter, and z' is equivalent to a
delay of [ samples. The first equation ensures zero
distortion and the second prevents aliasing.

3.3 Multiple Resolution: Discrete Wavelet
Transform

We now have two channels in our analysis and synthesis
(reconstruction) filter banks. The idea is to decompose
the signal into components at multiple resolutions, with
octave dilation factors (in general powers of p). We
lower the resolution, i.e. shrink the signal or image, by
downsampling, and reconstruct by upsampling. To work
with multiple resolutions, we apply the filter bank in Fig.
1 recursively:

High Resolution

Low Resolution

Fig. 2. Multiresolution Filter Bank

As the object is to shrink the image, it is conventional to
apply a smoothing (lowpass) filter, to avoid aliasing. By
convention, therefore, H, is a lowpass filter and H; is a
highpass filter, so that all information about the signal or
image is retained. Eventually we are left with just a
small number of coefficients at the lowest resolution (in
the limit just one), and a pyramid of highpass output
values at multiple resolutions, each resolution (for 1D
signals) having half the number of coefficients of the
previous resolution. The case is slightly different for
higher dimensions, for example images, covered in
Section 6. This representation is the discrete wavelet
transform, sometimes called a pyramid, because the
number of coefficients decreases at each new level. The
reconstruction of the signal from the pyramid is also
done recursively in reverse order.

The highpass outputs are often referred to as detail
coefficients, because they effectively siphon information
at a particular resolution, the lowpass coefficients going
to the next level. At each resolution, the combination of
a number of iterations of H;, followed by H; can be
regarded as a bandpass filter, and is the analogue of
convolution of the signal with the analysing wavelet at
the appropriate scale.

The method of convolution is rather different, however.
In Equation (2) the convolution is done by dilating the
filter g but keeping the signal f fixed. In the discrete
implementation the filter is fixed and the signal is dilated
by the inverse factor. The two operations are equivalent
in the continuous case, as can be seen by substituting u/s
for u in Equation (2), but in the discrete case they are
not, because upsampling and downsampling are not
inverses.

The main reason for shrinking the signal rather than
expanding the filter is efficiency, as in the former case
the computation decreases with resolution, whereas in
the latter case the computational load increases, as the
filter coefficients increase in number. However, there is
a drawback. Downsampling means that the wavelet
transform is evaluated on an increasingly sparse grid as
the resolution decreases. This grid is prescribed, so the
discrete wavelet transform is not translation invariant. If
we shift the signal by k, the wavelet transform is
translation-invariant only at resolutions which divide
into k perfectly. Eventually the dilation factor will
exceed k, and so translation invariance will break down.
The wavelet transform of the translated signal effectively
“falls between” points in the grid above a certain scale.
The discrete wavelet transform is only scale-invariant for
octave (powers of p) scale changes, for similar reasons.
This failing has implications for detection and
classification of objects, as they do not necessarily result
in the same signature in the discrete wavelet transform
when translated or dilated. The continuous wavelet
transform does not have these disadvantages.



4. The Dilation and Wavelet Equations
4.1 Wavelets and Filter Banks

The multiresolution filter bank of Fig. 2 is essentially
how the discrete wavelet transform is implemented, but
the relationship with the continuous wavelet transform is
rather loose, based on the analogue between dilation and
resampling. Under certain conditions however, described
in this section, there is a much stronger link between
wavelets and filter banks, discovered by Stephane
Mallat, summarised next. It is based on a construction
which allows continuous wavelet transform coefficients
to be computed using multiresolution filter banks. This is
done using two equations: the dilation equation:

p(x)="> 2k, (k}p(2x - k)
k ‘ (N

and the wavelet equation:

w(x)=Y 2k, (kPpQx—k)
k (8)

where hj and h, are the impulse response coefficients of
the filters Hy and H; respectively (the equivalent of the
coefficients b in Equation (5) if the coefficients a are all
zero). ¢ is called the scaling function and w is the
analysing wavelet which has the same role as g in
Equation (2). When convolved with the signal, ¢ acts as
a lowpass filter (in much the same way as the discrete
filter Hy) and w is a bandpass filter (analogous to Hj).
Equations (7) and (8) allow the wavelet transform at one
scale to be calculated from the same transform at half
this scale, without direct convolution, using the discrete
filters Hy and H,. To see how this works, substitute ¢ and
w for g in equation (2) to produce two functions wy(x,s)
and wi(x,s), and then sample these functions on a
discrete grid with octave scales and position spacing
proportional to scale (pyramid sampling):

a(p.q)= w(,(zq,p) : .
b(p,q): Wl(zq,p) ,  Pp,q tegers o
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We then have the following recurrence relations for a
and b:

a(P’Q)= zﬁhﬂ (k - 217)1(1("]"'1)

b(p.g)= 3Tk ~2p )l +1)
! (10)

which is identical to using the coefficients a(p,q) as
input data into the filter bank of Fig. 1 to produce
a(p.g+1) and b(p,g+1) as outputs. The multiresolution
filter bank of Fig. 2 will therefore produce the values of
the wavelet transform function w; on the pyramid grid,
but much more efficiently than by direct convolution.

The filter bank in Fig. 2 works because the scaling
function and analysing wavelet are carefully designed so
that these functions can be dilated by translation, scalar
multiplication and summation, using equations (7) and
(8). This is a delicate process, as we require linear
combinations of the function ¢ and a number of
translated replicas to combine to produce the same
profile, but dilated. It is a bit like a self-similar jigsaw
puzzle: the jigsaw pieces at one scale have to fit together
perfectly to produce the same jigsaw piece doubled in
size.

4.2 Haar Wavelets

We demonstrate the use of the scaling and wavelet
equations with the Haar scaling function and wavelet,
which until the 1980°s was the only example of a
function of compact support known to solve these
equations. We begin with the very crude lowpass and
highpass filters Hy = [1/2,1/2] and H; = [1/2,-1/2]. We
now have the following dilation and wavelet equations:

¢(x)= ¢(2x)+ ¢(2)C'— 1)
w(x)=p(2x)-p(2x-1) (11

which have the Haar scaling function and wavelet as
solutions, shown in Table 3.

In this simple case it is obvious how the Haar scaling
function (top hat) solves the dilation equation, as the

Table 3. Haar scaling function and wavelet

Name

Function

Shape

Haar scaling function |

¢(x)={

0<x<l

0 otherwise

Haar wavelet 1

0<x<<

olx)=1-1

0 otherwise

|
7$X<1
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summands on the right hand side do not overlap, but the
existence of other, less trivial solutions (with different
filters Hy and H,) which are smooth and do overlap is
much more interesting and useful. The Haar wavelet has
some good properties; it is very compact, has a very
simple two-point filter and its pyramid translations and
dilations form an orthogonal basis. It is not smooth,
however, and thus has very poor localisation of Fourier
frequency. A major advance was made in the mid 1980’s
by Ingrid Daubechies, who discovered a family of
smooth wavelets which also solve the dilation and
wavelet equations. These are now widely used in signal
and image compression.

4.3 Existence and Construction of Wavelets

The obvious remaining issue is knowing when there are
solutions to the dilation and wavelet equations, are how
to find them. Existence and uniqueness depend on the
following Toeplitz matrix:

h() h @) hB) k@)
hy (1) hy (2) hy (3)
T(Ho)= h()(l) hl)(z)

hy (1)

") (12)

derived from the lowpass filter Hy. We derive another
matrix, called the transition matrix:

T, =21l 2)H, ) (H,) (13)

The dilation and wavelet equations have a unique
solution if the eigenvalues of the transition matrix are
less than unity, except for a single eigenvector with unit
eigenvalue. Moreover, when this happens we have a
simple recursive recipe for calculating the scaling
function ¢; it is the limit of the following convergent
sequences of functions:

- (x)= ; 2h, (k»n (2x - k)

(14)

whose resemblance to the dilation equation (7) is
obvious. The wavelet function can be derived directly
from the scaling function using equation (8).

To summarise, we have achieved a huge gain in
efficiency by calculating the wavelet transform using a
discrete multiresolution filter bank, but at a price, as we
have imposed a constraint on the wavelet function w in
the form of the dilation and wavelet equations. For many
applications the shape of the wavelet is not critical, as
long as it has the required compactness in space or
frequency, but there are some applications, for example
target detection, where the shape is more important. We
have also constrained the evaluation of the wavelet

transform to a discrete pyramid grid, which is also be
unsuitable for applications where translation and scale
invariance are important.

5. Wavelet Varieties

As with filter design, there are various, sometimes
conflicting requirements of wavelet analysis, so there are
different types of wavelets which are suitable for
different applications, discussed in this section.

Although the scaling and wavelet functions are uniquely
determined by Equations (7) and (8), they can still be
controlled by the coefficients of the filter H,. The typical
approach to wavelet design, therefore, is to design this
filter first, along with H,. The reconstruction filter is
then derived from the perfect reconstruction equations
(6), which provides the inverse to the discrete wavelet
transform. In this section we review briefly some of the
many varieties of wavelets and filter banks that are
available for 1D signal analysis. Higher-dimensional
signals, including images, are considered in Section 6.

5.1 Orthonormal Wavelets

The most well known type of wavelet are the
orthonormal wavelets discovered by Ingrid
Daubechies. Here the filter Hy is designed such that the
analysing wavelet and all its translations and dilations on
the pyramid grid are mutually orthogonal and have unit
energy:

k,l, p,q integers

Jw(21x+k),v(2"x+ ;7)[x={(l) k=p.l=gq

e otherwise

(15)

Orthonormal functions are liked by mathematicians
because transforms which use these functions are very
stable, and trivial to invert, so reconstruction of the
signal or image is very easy and efficient. In the case of
the wavelet transform the inverse is given by:

FG)= 3 b(p.gw2t x+ p)+ Y alp.go w2® x+ p)

P4<qq P

(16)

so the wavelet coefficients on the pyramid are the
weighting factors required to reconstruct the signal or
image f. A necessary and sufficient condition for
orthonormal wavelets is that the filter H, is double-shift
orthogonal, which means that when convolved with its
transpose, all the even coefficients are zero except at
zero, where the coefficient is two. The odd coefficients
do not affect orthogonality of the wavelets. In the
Fourier domain these filters are known as half-band,
because the power spectrum added to a mirror image
about half the Nyquist adds to unity at all frequencies:



Iﬁ(wfﬁ-‘ﬁ(wﬂzf =1 amn

The highpass filter H; is thus derived from H, by
changing the signs of the odd coefficients and then
transposing. The synthesis part of the filter bank is
identical to the analysis part except for a transpose: hy(k)
= fy(-k) and hy(k) = f,(-k).

The remaining task is to design the coefficients of Hy, to
satisfy Equation (17). This is a complicated process, so
only an outline of one method to derive orthogonal
wavelets will be given here. First a power spectrum

’ﬁ(a)f is found satisfying Equation (17), which for FIR

filters means finding a finite symmetric polynomial
satisfying:

P(x)+ P(1-x)=1 (18)

but where for smooth, band-limited wavelets it is also
desirable to have P and as many derivatives as possible
zero at x=0 and x=1, except P(0)=1. The family of
solutions, called maxflat filters, is given by:

P=-r §[ 7 e

k=0

(19)

Next the coefficients of Hy are derived from P; P is the
autocorrelation of H:

P(Z)=HO(Z)H0(Z_I) 20

and solving this equation is known as spectral
factorisation. One method is to find all the complex
roots of P, which because it is real and symmetric, has
roots which come in pairs which are mutually reciprocal.
The polynomial Hy is derived by gathering together one
root from each pair whose modulus is less than or equal
to unity. Fig. 3 shows the Daubechies’ wavelets with
p=5 and p=8, which become smoother and more band-
limited with higher p.

Fig. 3. Daubechies’ wavelets DB5 and DBS
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0.5k

(b) p=8

Orthonormal wavelets and filter banks are very
convenient, but the constraint imposed by Equation (17)
is very restrictive. For example, except for the trivial
case of the Haar scaling function, none of the scaling
functions, wavelets or filters are symmetrical. It is
tempting to use orthogonal wavelets because of their
simple inversion formula, but in many cases this is
unnecessary, as we often do not require the same
coefficients for the analysis and synthesis filters. An
analogue is the use of matrices to solve simultaneous
linear equations. A matrix with a simple, sparse inverse
permits us to solve simultaneous equations easily, but
efficient inversion does not require the additional
constraint of the inverse being equal to the transpose, as
required of orthogonal matrices.

5.2 Biorthogonal and Semi-orthogonal Wavelets

Orthonormal wavelets are the analogue of orthogonal
matrices. Likewise biorthogonal wavelets are the
analogue of invertible matrices. The inverse of the filter
bank is perfect reconstruction, so we still require
Equations (6) to be solved, but now the synthesis filters
Fy and F; can be very different to the analysis filters H,
and H,. We also have to work with two types of scaling
and wavelet function: one pair for analysis, to calculate
the wavelet coefficients using Equation (2), and a
different pair for synthesis, to reconstruct the signal or
image, using Equation (16). The wavelets and filter
banks are still related by the dilation and wavelet
equations (7,8), but now the analysis functions are
generated by the analysis filters H, and H;, and the
synthesis wavelets are generated by the synthesis filters
Fy and F,. The perfect reconstruction equations (6)
ensure that these wavelets are biorthogonal, which
means that in Equation (15) one of the wavelets in the
integrand is an analysis wavelet, and the other is a
synthesis wavelet, but otherwise the formula is the same.

Semi-orthogonal wavelets are another important
variety, where wavelets of different scales are
orthogonal, but wavelets of different position are not
always orthogonal. These are useful for interpolation
and approximation of functions. A popular a simple
choice are the spline wavelets, whose scaling functions
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are the Haar scaling function (top hat) convolved with
itself n times, and whose lowpass filter has binomial
coefficients. The orthogonality across scale ensures that
the accuracy of approximation for smooth functions
increases with maximum rapidity as scale decreases, but
orthogonality between wavelets of the same scale
imposes undesirable constraints which degrade
approximation

A useful tool which has gained a lot of attention recently
is lifting, which is a systematic and flexible method of
constructing biorthogonal wavelets and filter banks. The
idea is to change H; to meet application-specific design
requirements, whilst still satisfying the perfect
reconstruction of Equation (6). It turns out that any
change to H,, of the following form will achieve this:

H,(z)—> H, @)+ F,(-2)5(*) 21)

for any filter S(z). We can do a similar operation on the
synthesis filter F, which is called dual lifting. Typically
the process of filter design starts with a simple filter, for
example a delta function or top hat, called a “Lazy
filter”, and then the processes of lifting and dual lifting
are iterated with suitable choices of S, until the design
requirements are met.

5.3 Wavelet Frames

Lastly, we briefly mention wavelet frames. The discrete
wavelet transform and filter banks mentioned so far are
fully invertible transforms, so there is a one-to-one
correspondence between the signal and the output of the
wavelet transform or filter bank. This is equivalent to the
translations and dilations of the mother wavelet on the
pyramid grid being a basis; they are linearly independent
and span the space of signals. In wavelet frames the
requirement for independence is dropped, which
typically involves oversampling the continuous wavelet
transform by adding extra points to the pyramid, for
example by doubling the resolution in position or by
halving scales between octaves. The wavelets still span
the signal space, so any signal can be recovered from the
wavelet transform. Not all such functions of position and
scale are wavelet transforms, however, so wavelet frame
transforms only have one-sided inverses.

Wavelet frames are generally more computationally
intensive, as there are additional coefficients to calculate,
but objects such as targets can be characterised more
flexibly at intermediate positions and scales. Wavelet
frames become more translation-invariant as the
sampling density increases, as they are better
approximations to the continuous wavelet transform.

To summarise, there is a wide variety of wavelets and
filter banks available for signal analysis, each with its
own strengths and weaknesses. Although it is tempting
to use the first family of wavelets that springs to mind,

for example the popular Daubechies wavelets, there may
be others more suitable for the application. There are
also design techniques, such as lifting, to customise
wavelets, should off-the-shelf varieties not suffice.

6. Wavelet Analysis in Higher Dimensions

The techniques described in Sections 3—5 are applicable
to l-dimensional signals. In higher dimensions there are
two approaches to wavelet analysis: either to use
separable filters which can be derived easily from 1D
filters using exterior products, or non-separable filters,
which have to be designed from scratch, which is more
difficult.

6.1 Separable Wavelets

Separable functions of several variables are Cartesian
products of functions of fewer variables:

f(x,,xz,...,x”)= £ (x| )fz(xz)---fu(xn) (22)

where in general the arguments x; can be vectors as well
as scalars. Exterior products of scaling functions and
wavelets make effective higher-dimensional wavelets,
inheriting all the properties of their lower-dimensional
components. To simplify the notation, we will consider
exterior products of two 1-dimensional wavelets to
facilitate image wavelet analysis, but the principles
behind higher-dimensional wavelet analysis are
identical.

Image wavelet analysis involves one lowpass filter Hq
and three highpass filters, H;, H,, Hj, each of which is
the exterior product of 1-dimensional lowpass or
highpass filters:

hn(m’")zho(mylu(”) h’l(m'n)zh(l(myll (n) (23)
hz(m’”):h[ (m)hn(’l) h}(man)zhl(m)hl (”)

Similarly there is one scaling function and three wavelet
functions formed as exterior products of their 1-
dimensional counterparts:

3(x.y)=0(p(0)  6,(xy)=oxw(y)
9, (x, )’)= w(x}p(y) o, (X, y)z W(X)W()') (24)

The multiresolution filter bank has four outputs at each
scale; the lowpass output is downsampled and goes to
the next resolution, and the other 3 outputs are the detail
or wavelet coefficients, as for the 1-dimensional case.
The three types of wavelet are usually regarded as
having horizontal, vertical and diagonal orientation.

The discrete wavelet transform is usually displayed as
shown in Fig. 4, though this representation can be
misleading. In this representation the density of wavelet



coefficients is kept constant, with larger regions required
to store information at high resolution (low scale). The
wavelet coefficients at any scale are three times the
number at all larger scales, because there are three
highpass filters to one lowpass filter. The regions are
designated LL (lowest resolution only) HL, LH and HH
according to which combination of 1-dimensional filters
is used in the Cartesian product. This representation is
convenient, because the transform has the same shape
and number of pixels as the original image, an example
shown in Fig. 5, but the larger scales are portrayed as
being smaller in size! It is true that the downsampling
operator has this effect, but a more natural interpretation
is that the wavelet filters increase in scale.

LH HH
LH HH
HL
LH| HH
HL
LL | HL

Fig. 4. Image wavelet display

REVE

Fig. 5. Wavelet decomposition of ‘Lena’ — 2 levels

6.2 Non-Separable Wavelets

The alternative approach to image wavelet analysis is to
use non-separable wavelets. Although more difficult to
design, these can be more flexible, especially in
orientation. The image pyramid grids and resampling do
not need to be rectangular or separable, either. An
example is given in Fig. 6, where the small and large
dots comprise the grid at one resolution, and the large
dots only comprise a sub-grid at the next lowest
resolution.

Fig. 6. Non-separable grid

In this example the change in area and the resampling
factor between scales is not 4 as it would be in the
separable case, but 2, so there is only one highpass filter
required, as for the l-dimensional signal case. In this
case resampling causes a rotation through 45°. This is
known as quincunx resampling. Hexagonal grids can
also be used, which permits wavelets with 60°
orientation intervals to be constructed. Even more exotic
wavelet grids have become popular in the interpolation
of complex geometric surfaces [7], which is a very
active research topic.

7. Wavelet Packets

In conventional wavelet analysis the main source of
variety in the transform is in translation and dilation.
One or a very small number of filters is involved, except
for differences in position and scale. This limits the
variety of information that individual wavelet
coefficients represent. Another approach that has gained
popularity in recent years is that of wavelet packets,
where the functions used to represent the signal or image
vary in shape also. Typically frames are used instead of
bases, initially providing redundancy, but then a subset
of the coefficients are selected to derive a basis which is
adapted to fit the incoming data.

One way to do this is the extend the sub-band coding to
encompass any dyadic tree structure. In conventional
wavelet analysis it is only the lowpass filter that is split
further by downsampling and bandpass filtering; the
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output from the highpass filter is left alone. In a more
general dyadic tree, the decision to split the channel is
applied more arbitrarily, to yield a wide variety of
transforms. Fig. 7 shows some examples of dyadic trees.

Lowpuss

Highpass

Wavelet

Wavelet tree packet tree

Complete tree

Fig. 7. Dyadic tree structures

The complete dyadic tree divides all branches, resulting
in an equal partition in the Fourier domain, analogous to
the short-time Fourier transform which divides the signal
into a set of time-frequency cells of identical duration
and frequency bandwidth. If we apply the complete tree
to the Haar filter, for example, we get the Walsh
functions, shown in Fig. 8.

]
i

Fig. 8. Walsh functions

i

In general the aim of wavelet packet analysis is to
approximate the signal or image by a series of functions
chosen from a large set, called a dictionary, for example
the functions generated by all dyadic trees. The functions
are chosen to give the best approximation with the
smallest number of components. The larger the
dictionary, the more computation required, but also the
greater the potential for an efficient representation. An
alternative approach is to extend the transformations
which generate the wavelet basis beyond translation and
dilation to include shape changes, for example frequency
shifts and chirp angles (chirplets [8]), or in the case of
image wavelets, affine transformations (ridgelets [9]).

There are also different approaches to choosing the
functions from the dictionary to approximate the signal
or image. One method is the best basis algorithm [10]
which selects functions from a union of several bases.
Another is matching pursuit [11], where wavelets are

selected from a large dictionary (e.g. generated by
translation, dilation and frequency shifts) in the order
that most rapidly decreases the approximation error, and
at each stage subtracts the chosen function from the
signal or image. Another method [12] is selection from a
continuum of functions analogous to the continuous
wavelet transform, searching for local maxima in
correlation with the signal or image, but where
parameters are not limited to position and scale, or to a
discrete grid. A conjugate gradient search is used to
refine the wavelet parameters after an initial grid search,
enabling the wavelets to fit the signal or image data
more accurately, and achieving invariance with respect
to translation, dilation and related operations.

9. References

1. G. Strang and T. Nguyen, Wavelets and Filter
Banks, Wellesley-Cambridge Press, Rev. Ed., 1997.

2. Y. Meyer, Wavelets, Algorithms and Applications,
Siam, Philadelphia, 1993.

3. Feder J., Fractals, Plenum Press, 1988.

4. A.K.Jain, “Image Data Compression: A Review”,
Proc. IEEE, 69, pp.349-389, 1981.

5. T.H. Koornwinder (ed), Wavelets: An Elementary
Treatment of Theory and Applications, World
Scientific, 1993.

6. G.H.Watson, “The Detection of Unusual Events in
Cluttered Natural Backgrounds”, NATO RTA lecture
series 216, Application of Mathematical Signal
Processing Techniques to Mission Systems, 1999.

7. AW.F.Lee et al, “MAPS: Multiresolution Adaptive
Parameterisation of Surfaces”, Computer Graphics
Proceedings (SIGGRAPH 98), pp.95-104, 1998.

8. S.Mann and S.Haykin, “The Chirplet Transform:
Physical Considerations”, IEEE Trans. on Signal
Processing, 43(11), Nov 1995.

9. E.J.Candes, “Ridgelets: Theory and Applications”,
PhD Thesis, Dept of Statistics, Stamford University,
1998.

10. R.R.Coifman and M.V.Wickerhauser, “Entropy-
Based Algorithms for Best Basis Selection”, IEEE
Trans. on Information Theory, 38, pp.713-8, 1992,

11. S.G.Malilat, “A Theory of Multi-Resolution Signal
Decomposition: Wavelet Decomposition”, [EEE
PAMI., Vol. 1, pp. 674-693, 1989.

12. G.HWatson and K.Gilholm, “Signal and image
feature extraction from local maxima of generalised

correlation”, Pattern Recognition 31(11) pp.1733-
1745, Nov 1998.

© British Crown copyright 1999. Published with the
permission of the Defence Evaluation and Research
Agency on behalf of the Controller of HMSO.



2-1

The Detection of Unusual Events in Cluttered Natural Backgrounds

G.H.Watson
Room 1052, A2 Building, DERA Farnborough, Ively Road, Farnborough, Hants, GU14 OLX, UK

1. Introduction

This paper is concerned with the use of wavelet analysis
and statistical models of natural backgrounds as a means
of detecting unusual events within, in particular targets
of military interest. The underlying principle is to detect
targets as objects that stand out from the background,
and hence are unusual, rather than searching for objects
with prescribed characteristics and dealing with clutter as
an afterthought. First a method of feature extraction is
described based on wavelet analysis which is used to
characterise both backgrounds and unusual events. Then
the statistics of these features for natural backgrounds are
considered, making use of fractal geometry, from which
basic clutter rejection can be implemented. More
advanced clutter rejection methods are then considered,
based on the multivariate statistics of additional
measurements. Three cases are considered in detail: the
wavelet analysis of multispectral data, the use of local
variance to reject clutter in intermittent backgrounds, and
the use of temporal variability to reject clutter in image
sequences.

The approach of modelling the background, rather than
the target, has the advantage that little or no prior
knowledge of the latter is required, leading to greater
flexibility and robustness. Target prior can be added at a
later stage, if available, for further discrimination and
clutter rejection. In some military circumstances early
warning of targets is required before any detailed
structure can be resolved, the limiting case being point
targets with a single-pixel signature. In such cases target
prior is of little use in recognition, being limited to the
time signature of a single pixel, so the use of background
context can be critical to early detection.

The method to be described comprises the following
stages:

(a) Decompose the signal or image data into a set of
discrete features which are suitable as an ensemble
for characterising both targets and the background.
These features are generally simple geometric
shapes to facilitate their extraction, such as blobs
and bars in images, but which can be combined to
characterise more complex objects, such as roads
and cloud edges. These features are usually
extracted at multiple scales, using wavelet analysis.

(b) Construct a statistical model of the background
based on the above feature decomposition. Most
natural backgrounds are difficult to model, having
strongly non-Gaussian  statistics and phase
correlation, for example in the form of strong edges.
In general the joint statistics of feature parameters
such as brightness, position, scale and orientation
need to be calibrated, resulting in multidimensional
probability distributions. However, most natural
backgrounds are stationary and exhibit fractal
geometry, which simplifies the statistical modelling.

(c) Extract potential targets as statistical outliers, that is
at the edges or tails of the background distribution.
Each object is assigned a prior probability that it
belongs to the background, and hence not a target.

(d) If additional target prior is available, use Bayes’
formula to combine the prior distributions of targets
and the background to estimate the a posteriori
probability (likelihood) of there being a target. This
topic is not covered in this paper.

This method can be applied to a wide variety of data,
including [-dimensional signals (e.g. acoustic data), 2-
dimensional images (including multispectral imagery), 3-
dimensional images (e.g. medical tomography), and
time-sequenced imagery, where movement is part of the
feature characterisation. The method is only limited by
the methods of feature extraction available, and the
accuracy of the background statistical models.

The remainder of this paper is organised as follows.
Section 2 describes methods of feature extraction, based
on searching for local extrema in the wavelet transform
and analogous correlation, and explains the relationship
between this and matched filtering. Section 3 describes
how the statistics of these wavelet features are calibrated
with the aid of fractal geometry. Section 4 explains how
improved clutter rejection can be implemented by
introducing additional random variables, and gives three
examples: multispectral imagery, strongly intermittent
backgrounds, and image sequence clutter rejection based
on space-time filters.

2. Feature Extraction

As explained in Section 1, the purpose of feature
extraction is to decompose the signal or image into a set
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of discrete geometric components which are sufficient to
characterise both targets and background sufficiently
well that the former can be recognised as unusual events.
This involves making measurements of the data for
which targets might have unusual values, which in signal
processing parlance means applying filters to the data.
The most well understood filters are linear, which will be
considered in this section; Sections 4.2 and 4.3 give
examples of non-linear filters which provide further
discrimination of targets and clutter.

2.1 Features from Matched Filters

Matched filter theory [1,2] can be used to derive the
optimum linear filter (matched filter) to detect any
prescribed object, in the sense that signal to noise ratio
(SNR) is maximised. If f is the filter, x 1s the target then
SNR is defined to be:

/() (1)

Ve @r)

where E denotes expectation. In this section it will also
be assumed that the signal or image data is stationary,
that is statistically translation-invariant. This is usually
the case for time-varying signals and imagery projected
as a plan view, but there is often a statistical dependence
on the vertical image co-ordinate for forward-looking
imagery. The latter situation is considered in Section 4.3.
For translation-invariant data the filters should be
translation-invariant to avoid statistical bias, which
implies linear filtering is equivalent to convolution. In
such cases the Fourier transform of the matched filter
F(w) is given by:

Flw)= % @

where X is the Fourier transform of the target, the bar
denotes complex conjugation, and N is the power
spectral density (PSD) of the background. The inverse
Fourier transform can be used to derive the convolution
kernel in the signal or image space.

Matched filters are simple and effective when the target
configuration is simple, for example a point target, as the
number of possible target configurations may be small.
Where the target is more complex, either because spatial
structure can be resolved or because its trajectory is
varied, the number or complexity of matched filters
makes their implementation more difficult. For example,
an aircraft may be viewed from many ranges and aspects,
each requiring a different matched filter. In this paper
matched filters are designed instead to detect simple
geometric structures which are suitable for characterising
parts of targets or backgrounds. For example, if the
target is a missile, we may choose a bar shaped

component; this will not fit the missile exactly, but gives
a fairly good approximation to the missile body and the
plume. If we choose very simple, generic components,
we will be able to pick up a wide variety of objects, but
there will be some loss in detection sensitivity when the
SNR is very low.

2.2 Translation and Dilation Invariance

Convolution involves correlating the kernel with the data
and repeating this operation over all translations of the
kernel. Translation is usually required because there is
little or no knowledge of where the target is located in
space or time prior to its detection. It is fortunate that
many backgrounds are also statistically translation-
invariant, otherwise translation of the filter kernel would
not give consistent  answers.  Non-stationary
backgrounds, such as in forward-looking imagery are a
common source of false alarms for this reason.

In many situations the scale of the target signature is also
not known a priori, primarily because it is affected by
the distance to the sensor. Thus multiresolution analysis
is required, where the filtering is repeated over varying
scale as well as varying position. This is why wavelet
analysis is a useful tool in target recognition. Even when
there i1s prior knowledge of target size, the geometric
features used in its analysis may be of varying scale, for
example a missile’s guidance fins are usually much
smaller than its fuselage.

Many backgrounds are statistically scale-invariant,
though this is not as intuitively obvious as translation-
invariance. In many images of familiar scenes, such as
natural terrain, the scale or magnification is hard to
discern unless there is a reference object of known size,
such as an adult human. This phenomenon is the subject
of fractal geometry [3,4], where scale-invariance is
known as self-similarity. Strictly speaking self-similarity
means that there is a scaling transformation under which
the signal or image is identical to a subset of itself, where
the scaling transformation is given by:

f@= s (x) (3)
/

where f is the signal or image being transformed, s is the
scale or dilation factor and the constant A is sometimes
called the self-similarity parameter. When modelling
natural backgrounds the equality of equation (3) is
replaced by statistical invariance. The response of
statistically self-similar backgrounds to filters at different
scales can be normalised by dividing by s [5], allowing
the same threshold to result in the same false alarm rate
over a range of scales. We will return to the use of fractal
geometry in modelling the statistics of backgrounds in
Section 3.



2.3 The Wavelet Transform

So far we have established that correlation should be
combined with translation and dilation, resulting in
wavelet analysis, and that the background is often
translation and scale invariant, which means that the
statistics of the wavelet transform should be uniform.
However, care must be taken to employ the correct scale
normalisation factor s”, to ensure uniformity. The
standard definition of the continuous wavelet transform
is consistent with A=-V2, the self-similarity parameter for
uncorrelated backgrounds (white noise):

N

T(p,s)=s" Tf(x)g[x_ P }fx )

but in general, for constant false alarm rate (CFAR)
detection, the formula should be modified to:

T(p,s)=s"" Tf(x)g{x_ ‘D]dx (5)

N

The shape of the analysing wavelet g can be derived as
the matched filter of the geometric feature which will be
used to characterise the signal or image data, at a chosen
position and scale. If more than one type of feature is
used, for example radial basis functions and oriented
bars, then more than one analysing wavelet is required,
and more than one wavelet transform calculated.

The use of matched filter theory to derive appropriate
analysing wavelets shows that the latter depend on both
the shape of the geometric features used to characterise
the data, and on the properties of the background, in
particular its PSD. For uncorrelated backgrounds the
matched filter is the same as the geometric feature,
except for a reversal in space and time (a mirror image).
For most correlated backgrounds the PSD decreases with
frequency, so the matched filter is similar to the feature,
except higher frequencies are emphasised, which has the
effect of introducing side-lobes. For self-similar
backgrounds the PSD is a (usually negative) power of
frequency [5], and the matched filter is thus a fractional
derivative [6] of the feature. For example, in Brownian
noise the matched filter is the time-reversed second
derivative of the feature, and the equivalent operator for
rotationally-symmetric  image backgrounds s the
Laplacian operator. In the latter case the matched filter
for a Gaussian radial basis function is its second
derivative, which is similar to the Difference of Gaussian
(DoG) filter so popular in target detection.

2.4 Local Maxima

The final stage in feature extraction is searching for local
maxima in the absolute value of the wavelet transform,
as this enables the data to be decomposed into a discrete
set of objects, and reduces redundancy. Restricting
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measurements to local maxima, rather than at all points
above a threshold, prevents redundant features being
generated from the same object in its neighbourhood. At
each local maximum, its location in wavelet space
(position and scale), and the type of analysing wavelet
(e.g. matched to a blob or bar) are recorded, as well as
the wavelet transform value itself. These values provide
a lot of information about targets and backgrounds, for
example the location, scale, orientation and grey-level
contrast of edges and bars, and an approximate
reconstruction is available by linear superposition of the
features whose parameters match the local maxima. In
the context of target detection, it is more useful to retain
only those features whose amplitude (wavelet transform
value) exceed a threshold corresponding to a prescribed
probability (Section 3). These features provide concise
information about the target and effective clutter
rejection, from which a partial reconstruction of the
target can be obtained. Examples of feature extraction
and vpartial reconstruction are given in Fig. 1,
demonstrating the ability to represent artefacts such as
roads and buildings, whilst rejecting most clutter.

The method of searching for local maxima depends on
the application. A search restricted to the positions and
scales of the discrete wavelet transform is quick to
implement, but the resulting features are limited by the
poor resolution of the pyramid grid of positions and
scales. This type of feature extraction is also not truly
translation and scale invariant, because most shifts in
position and scale cause the wavelet grid to change. This
drawback is mitigated if a wavelet frame is used with a
higher resolution in position and scale, which is
equivalent to interpolating the wavelet transform. Better
still, but more costly, is to refine the positions and scales
of the features thus found by evaluating the continuous
wavelet transform explicitly using expanded filters
instead of downsampling the signal or image, and then
optimising this function using a local search, for example
a conjugate gradient search [7]. This method results in
true translation and scale invariance.

3. Background Statistics and Fractal
Geometry

3.1 Threshold Exceedance Model

Once geometric features have been extracted from the
data (Section 2), the next stage is to discriminate
between potential targets and the background, based on
the statistics of the latter. First we describe a simple
statistical model for backgrounds with fractal geometry
which predicts the rate at which feature amplitude
(wavelet transform value) exceeds any prescribed
threshold y as a function of scale s. Jones [8,9,10] has
shown that amplitude threshold exceedance rates are
proportional to a power of scale, s"2, where D is a fractal
dimension describing the self-similarity of feature
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population, which is different to & (Section 2), describing
the self-similarity of feature amplitude. This self-
similarity enables a single scale-independent distribution
to represent the joint statistics of amplitude and scale:

N,s” =F(y) (6)

where N, is the threshold exceedance rate (number of
features whose amplitude exceeds the threshold y), and F
is a scale-independent function defining the shape of the
distribution.

The threshold exceedance statistics in [8] and for the
data analysed in this paper are approximated well by the
generalised exponential function F(y) = y/f3 where ¢ and
f are constants. This leads to the following model for
threshold exceedance statistics:

log N’; = —[%] N

where:

*« N, is the number of local extrema at scale s
whose amplitude T(p,s) exceeds the threshold
value y. Ny asa function of y is closely related
to the cumulative probability distribution of

wavelet amplitude T at the local extrema.

e D is a fractal dimension, and represents the
scaling behaviour of the population density of
local extrema with respect to position. For
statistically  stationary signals the fractal
dimension is equal to the topological
dimension, that is 1 for signals, 2 for images
and 3 for image sequences or tomography. For
intermittent  self-similar data the fractal
dimension can be less than the topological
dimension because of the hierarchical clustering
of local extrema, where at any scale a cluster is
formed of several smaller clusters with
intervening gaps. The Cantor set is an example
of a 1D signal with a fractal dimension of less
than unity.

e o is called lacunarity, which is a measure of
overall population density of local extrema in a
tractal.

e [Jis a measure of overall intensity, which in a
stationary process would be proportional to the
standard deviation of the signal or image.

e ¢ is an inverse measure of the strength of the
tails in the distribution of wavelet amplitude.
For example c¢=| represents an exponential
distribution with moderately strong tails,

whereas c=2 represents a Gaussian distribution
with weak tails.

Equation (7) can be used to assign an a priori probability
that a geometric feature arises from the background, and
by setting a threshold on this probability, driven by the
highest acceptable false alarm rate, the detection of
targets as unusual events is possible. For backgrounds
with translation and rotation invariance, we thus have a
simple method of target detection with no bias in
position, scale or orientation.

3.2 Calibration of the Model

To use equation (7) we need to know the values of the
parameters D, @, f3, ¢ and the self-similarity parameter
(Section 2). In some cases there is prior knowledge of
some or all of these parameters, for example there are
theoretical reasons for assuming a self-similarity
parameter of A=1/3 for fully-developed turbulent flow
[11]. More often it is better to estimate these parameters
from the signal or image data. This can be done off-line
as a separate training process, with the advantage that
there will probably be independent assurance that targets
are missing from the data. On-line calibration has the
advantage that the resulting detection algorithm can
adapt to changing background conditions, for example
caused by changes to the weather.

We now describe a simple and efficient method of
estimating D, &, f3, ¢ and h, making frequent use of linear
least-squares regression. The data used in this statistical
estimation is assumed to be a set of feature amplitudes
and scales (3, s¢). First, an approximate value of self-
similarity A, is used to calculate the modified wavelet
transform of equation (5). This can be estimated with
reasonable accuracy from the slope of the PSD plotted in
log-log co-ordinates; in theory the PSD should be
proportional to sV [5]. The self-similarity parameter
will be refined based on estimation from feature
amplitudes and scales. The initial guess only weakly
affects the location and density of local extrema in the
wavelet transform, so high accuracy is not required.

Next, threshold exceedance counts N, are derived,
conditioned by scale, for a range of scales s and
amplitudes y. The conditioning of scale depends on the
method of searching for local extrema in the wavelet
transform. If the search is limited to values of scale on a
discrete grid, then these values are used to partition the
data, and threshold exceedance counts are computed for
each partition set. On the other hand, if scales are
refined, for example using a gradient search, it is
necessary to partition scales into a set of intervals.
Threshold exceedance counts N are derived for a range
of values y for each scale or scale interval. An efficient
way of doing this for every value of y in the geometric
feature set is to sort the amplitudes of the latter into



descending order; the value ¥, for each y is then its index
in the sorted array.

The next step is to assign a weight to each pair of (y, N,)
which reflects its relative importance when fitting the
model given by equation (7). The weights depend on the
confidence in the data at the tails of the distribution
where y is large and N, is small. Where we are sure that
there are no targets, i.e. the background is “pure”, it is
appropriate to assign relatively large weights at the tails,
as it is the latter which are important in discriminating
targets from clutter. In this case assigning weights which
have uniform density in amplitude y, or even density
which increases with y, is appropriate, which can be done
by setting each weight to be the difference between y and
the next lowest value of y in the same scale partition.
Alternatively, where there may be targets present, for
example during on-line calibration, it is better to give the
tails low weighting, and rely on the model in equation (7)
to extrapolate these. This can be done by assigning equal
weights to each pair (y, N,), as the number of target
features is almost always orders of magnitude lower than
the number of background features.

The parameters D, o, 3, ¢ and A, are now estimated using
linear least-squares regression with the weights described
above. First we need to rewrite equation (7) to allow for
the difference between the approximate self-similarity
parameter A, and the actual self-similarity 4:

log[N"s ]:-[%J (3)
o sThB

The tail strength ¢ is estimated by fitting a linear model
to (log(y), log(log(N,))) and measuring the slope. Next a
linear model is fitted to (-y°, log(N,)) for each scale
partition, as follows:

log(N_v )= A, —-B.y* )]

where the slopes and intercepts A, and B, depend on
scale s. Then linear models are fitted to the following
data: (log(s), A,) and (log(s), -log(B,)) resulting in:

A, =P + P log(s) (10)
and
—log(B,) = P, + P, log(s) (1n)

Substituting (10) and (11) into (9) we obtain:

bl (12)

N
log 2 }=
[exp(l’. B 1 exp(P )"

Comparing equations (8) and (12), the parameters D, g,
B, and h, are derived straightforwardly from the slopes
and intercepts P, P,, P3 and P,.

25
4. Clutter Rejection from Joint Statistics

For some backgrounds, for example where clutter is
intermittent, detection sensitivity can be increased by
taking additional measurements into account, thus
introducing additional criteria for discriminating targets
and the background. In this section we describe a method
of doing this based on the modelling of the joint statistics
of wavelet amplitude and other variables describing the
background.

4.1 Vector Fields

The most straightforward example of additional
measurements is the analysis of vector fields rather than
scalar data, in which each sample pixel has a vector
value. Examples of vector fields are fluid flow velocity,
electromagnetic fields, and multispectral imagery. In this
case the joint statistics of wavelet amplitudes of each
component of the vector (treated as a scalar field) are
modelled. These wavelet amplitudes are the components
of a multiresolution vector field which is a vector
analogue of the wavelet transform:

T(p,s)=s"" ]:f(x)g(x—_;ﬁ}j,\ (13)

—oo

where correlation now involves pointwise multiplication
of the vector field f by the scalar filter g and integration
is vector summation. Matched filter theory can still be
used to design analysing wavelets, but now the power
spectrum contains information about the cross
correlation of the vector components at each frequency,
as well as their autocorrelation.

There is no direct analogue of the feature extraction of
Section 2 for vector fields, because local maxima of the
wavelet transform are not defined, being vector valued.
If the probability density function (PDF) of the wavelet
transform were known a priori and easy to compute, then
we could derive a scalar-valued function of the wavelet
space by composing the above vector wavelet transform
(which maps wavelets to a vector space) with the PDF
(which maps the same vector space to the real line). It
makes sense to search for local minima in the composite
function, as these correspond to locally unusual events.
There are two drawbacks to this:

e Joint PDFs are difficult to estimate accurately, with
the difficulty increasing rapidly with the number of
vector components. Over-fitting the PDF to the
training data is a common problem [12].

e Not all outcomes of low PDF correspond to likely
targets. For example, when based on local maxima,
most distributions of wavelet amplitude have low
PDF near the origin, corresponding to very low
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feature brightness or contrast. These features are not
usually target related.

In view of the above problems, the usual approach is to
search for local maxima of a derived scalar quantity, the
Mabhalanobis distance [13]:

D)= -p) (T -u) (14)

where u is the vector mean of the wavelet transform
values T, and C is the multivariate covariance matrix of
T. For Gaussian distributions D is proportional to the
negative logarithm of the PDF, and so is an unbiased
measure of rarity. This measure is also only high for
unusually high wavelet amplitudes (relative to the mean)
at the external boundary of the distribution, so ignores
very faint features. Like principal component analysis,
this method is very effective at extracting features with
unusual vector direction as well as amplitude, especially
when there i1s a high level of correlation in vector
direction. This situation is common in multispectral
imagery when the spectral bands of the background are
close in radiation frequency, resulting in a limited range
of “colour”. Objects which have an unusual radiation
spectrum (colour) often generate wavelet amplitudes
with a large Mahalanobis distance, even when none of
the vector components is unusually large regarded in
isolation.

The example in Fig. 2 concerns 5-band AVHRR
(Advanced Very High Resolution Radiometer) satellite
imagery of sea surface background. This data is a fusion
of two visible bands (0.6 and 0.8 um) and three infrared
bands (3.7, 11 and 12 um). The objects of interest are
tracks which arise from ship plumes altering the spectral
properties of the cloud. These tracks are visible in Band
3 (3.7 pum), and are generally absent or very faint in the
other bands. Figs. 2a and 2b show an example of such a
track against cloud clutter in Bands ! and 3 respectively:
the local SNR of the track is greatest in Band 3, but not
sufficient to be easily distinguished from the cloud
edges, especially towards the top of the picture. We base
our analysis on these two bands because the other bands
are either very similar in frequency or contain little new
information.

Figs. 2c¢ and 2d illustrate the advantage ot basing the
Mahalanobis distance on the wavelet transform T (Fig.
2¢) rather than the raw pixel values (Fig. 2d); the ship
track stands out much more clearly in the former case.

4.2 Intermittent Backgrounds

Another example of the use of additional random
variables concerns the modelling of strongly intermittent
backgrounds, in which some regions are energetic
(highly cluttered) and others are relatively quiescent.
Statistical translation-invariance does not rule out this

kind of variability with respect to position; it implies
only that global statistics are invariant. Local statistics,
such as standard deviation over a neighbourhood of the
signal or image, may still be position-dependent, and
often are for natural backgrounds. Variation in local
statistics happens either because the image background
comprises more than one texture, for example associated
with woodland, mountains and sea, or because a single
texture type is spatially intermittent, in which some
regions are more energetic than others.

Intermittency is represented implicitly in the statistical
model of Section 3 by the fractal dimension D and the
lacunarity o, but no account is taken of the dependence
of the average amplitude or population density of the
geometric features on their position, i.e. their tendency to
cluster. Thus whilst the effect of clustering on global
population densities is accounted for, the variation in
local density with position is not. If position dependence
is not modelled, the same thresholds will be applied to
energetic and quiescent regions alike, resulting in either a
loss of sensitivity in the latter or too many false alarms in
the former. We now show how the joint statistics of
wavelet amplitude and a non-linear function, local
energy, 1s used to rectify the above limitation. Further
detail 1s given in [14].

The most obvious method of allowing for spatial
variations in background activity is to condition the
background model given by equation (7) with respect to
position. This approach would require statistical
distributions to be measured over neighbourhoods of the
signal or image and then the model parameters fitted in
each case separately. This approach is not effective
because the fractal model parameter estimation only
works well with large images (at least 64x64 and usually
much larger) as filter statistics need to be compiled over
a number of scales and in sufficiently large numbers to
estimate a cumulative distribution function. The fractal -
model has the advantage of realism when applied to large
images but at the cost of a rapid decrease in accuracy for
images much below 128x128 pixels, and is thus
unsuitable for the representation of local statistics.

In any model of the background which is conditioned by
position, there is an inevitable conflict between the
accuracy of the estimation of statistical parameters on the
one hand, and spatial resolution of background intensity
levels on the other. For the purposes of target detection,
good spatial resolution is important because the threat,
for example an incoming missile, may be very close to
clutter, such as cloud edges, which could lead to
incorrect thresholds being used by the detection process.
The advantages of measuring background activity levels
with spatial resolutions of less than 64 pixels in such
cases are obvious. It follows that in the choice of the
representation of local statistics, spatial resolution should
be given a high priority. To achieve high spatial
resolution, local background activity needs to be



represented by a robust statistic which requires a small
amount of image data to compute reasonably accurately.
This is why a simple non-linear measure, local energy,
has been chosen for the spatial conditioning of the
background statistics.

Local energy is a measure of local background activity
which is computed over neighbourhoods of varying size
surrounding each geometric feature extracted from the
data (Section 2). Local energy E(x, L) is defined to be
the variance of the signal or image over a region centred
on x and of size L. For 1D signals this region is a subset
of the real line, for example an interval of length L, for
2D images it is a subset of the real plane, for example a
square, and for 3D image sequences a subset of space-
time. Detection sensitivity is generally improved if the
support of the geometric feature is subtracted from this
region, so that the wavelet amplitude and local energy
are less mutually dependent.

The region size L is defined relative to the scale s of each
extracted feature and is not to be confused with the scale
of the feature itself. Local energy measurements over
variable size L are required to achieve the best balance
between spatial resolution and accuracy of local energy
measurement. In cases where a potential target is close to
but not within an energetic region, a small local energy
region gives the best probability of detection. In cases
where the background activity is more uniform, however,
fainter targets can be detected with greater sensitivity
where background levels have been measured over an
extended region. The following region sizes L have been
considered in this paper: 2, 4, 8, 16 and 32. We now
describe how the joint statistics of local energy at each
size L and wavelet amplitude T are used to model
spatially intermittent backgrounds and improve the
discrimination between targets and clutter, illustrating
the technique on infrared imagery of the celestial
background (Fig. 3) in which some simulated point
targets have been inserted.

Fig. 4 shows the joint statistics of 7 and £ in the form of
a scatter plot, where L is set to 8, background data are
presented by points, and the targets by crosses. The
scatter plot resembles the joint PDF of these random
variables, as regions of high population density in the
scatter plot correspond to regions of high PDF. The
embedded targets are mostly separate from the
background distribution, that is in a region where the
background joint PDF is low. Thus in this case most of
the targets can be distinguished from the background as
statistical outliers, but they are not outliers with respect
to wavelet amplitude alone. Some of the target crosses
are located within regions of high background density,
but these all have high local energy and thus correspond
to targets embedded in strong clutter, in this case IR
cirrus, where the targets are very difficult to identify by
visual inspection. When in regions of low local energy,
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the targets are bright relative to the local background and
are thus perceived more easily.

The modelling of the joint distribution of y and E is done
along similar lines to the joint distribution of T and s in
Section 3, to avoid the disadvantages of estimating the
joint PDF of more than one random variable mentioned
in Section 4.1. Once the self-similarity parameter A has
been estimated, y is independent of scale, so the
dependence on s can be ignored. Details of the modelling
of T and E are given in [14], an outline of which is given
here. The idea is to predict the conditional cumulative
probability distribution of T given E. Observation of real
and simulated intermittent data (e.g. Fig. 3 for the IR
celestial background) has shown that this conditional
distribution is self-similar, being only dependent on an
energy-dependent dilation factor, which can be estimated
by calculating the conditional standard deviation of T as
a function of E. It has been found that a power-law fits
this function quite well, so the following model of
conditional threshold exceedance probability has been
used:

Pr(y’> y| E’= E) =exp —-[ﬂ;rj ) (15)
/

The parameter r is another measure of intermittency of
the background, and can be estimated by linear least
squares regression of the logarithm of conditional
standard deviation versus the logarithm of local energy.
The following energy-normalised wavelet amplitude

I=TE” (16)

is an energy-independent measure of rarity, and targets
and clutter can be discriminated more effectively based
on I instead of the un-normalised y. Fig 5 shows the joint
statistics of / and E, where it can be seen that the
dependence on E is greatly diminished compared with T
(Fig. 4), and that a single threshold on [ is sufficient to
detect most targets with very few false alarms.

The last step is to combine the rarity measures /(L) over
multiple regions sizes L. The idea is to select the "best"
region size L given the local distribution of clutter. If the
object in question is completely embedded in relatively
strong clutter then detection will be difficult for any size
L. If the object is close to but not embedded in strong
clutter then a small L will give the best detection
sensitivity, but a larger value is better otherwise. The
"best" size corresponds to the largest region not
overlapping strong clutter, in which local statistics are
most accurately represented.

An overall measure of rarity is therefore defined as
follows. First I(L) is normalised by dividing by its
standard deviation over all wavelets. Then for each
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feature the largest region size L is selected for which the
function 1”(L) given by:

I'(L)=IL,)-1I(L,,) n>2 (17)

n—t
- is less than 3.5 for all lower scales:
Lo, =max{L, :I'(L,)<3.50Vk:2<k<n} (I8)

Sudden decreases in /(L) are considered because these
correspond to a step increase in local energy, which
occurs when a region of clutter is encountered, as
required. Decreases of less than 3.5 standard deviations
are ignored on the grounds that they are not strong
enough to correspond to large changes in background
statistics. An overall measure of unusualness is then
defined as the mean value of / of size not exceeding
L

max"*

[, = ZI(L)/ Y- (19)

LSLyy Ll

Maximum and minimum values of I(L) were also
investigated but were found to be less robust
discriminators between targets and the background.

Figs. 6a and 6b compare the target detection
performance of the original scale-normalised wavelet
amplitude 7 and the new energy-normalised measure 7,
where in both cases the threshold has been set at 2
standard deviations (of T or I). The use of T results in 21
targets being detected along with 19 false alarms,
compared with 29 targets and only | false alarm when /
is used. The improvement in performance is due to the
ability to take local background conditions into account
in the neighbourhood of each target.

4.3 Image Sequence Analysis: Track Before Detect

The final example of the use of additional random
variables is to aid the detection of targets in time-
sequenced imagery, where target motion and the
evolution of clutter in time need to be taken into account.
Many target detection methods, including most earlier
ones [15], are based on “track after detect”, in which
initial processing is limited to single frames, and track
association algorithms are employed subsequently to
characterise movement. These methods are not effective
when there is insufficient information in single frames to
discriminate targets from a large number of clutter
objects, typically when the target is amongst clutter of
equal of greater edge contrast, or of similar texture, such
as roads, buildings, cloud edges and sea glint. Human
vision has the same limitation; objects which cannot be
recognised in still frames can often be detected
subliminally in a movie by virtue of movement or other
distinguishing temporal behaviour.

We consider instead a “track before detect” (TBD)
method, which combines image data from different
frames prior to detection, treating the data as a single 3-
dimensional set, and applying 3D filters. In this context,
movement is inherent in the 3D orientation of geometric
features within the data, and directly affects the response
of 3D filters. MFT is applicable to the analysis of 3D
image sequence data [16,17], using the same underlying
principles as for 1D signals and 2D images. The PSD is a
3D function, providing information about both spatial
and temporal correlation of the background.

In the case of point targets against a bland background,
where uncorrelated sensor noise dominates, MFT results
in a classic velocity-tuned filter which integrates image
intensity along the trajectory of the target. A very
different filter is required for scenes with strong static
clutter but little sensor noise. The background is usually
correlated in space (e.g. with a 1/f PSD) and very
strongly correlated in time (nearly constant), so MFT
leads to mean subtraction over time and a decorrelation
filter in space, e.g. a (fractional) Laplacian filter [16].
Additional spatial smoothing is required for larger
targets. For both types of background, however, the
matched filter is strongly dependent on velocity for small
targets, so often a large number of filters are required for
low targets with low SNR.

We have been able to take advantages of symmetry in
static downward-looking imagery to simplify the
background statistical models, using invariance with
respect to translation, rotation and scale. Unfortunately,
the statistics of space-time structure in image sequences
are often much more complex, with less natural
symmetry. Whereas the two spatial dimensions often
have an equal footing and similar statistics, the time
dimension is generally different, for example a scene
may be very highly correlated in time but much less so in
space. The space-time equivalent of rotation is
(approximately) a Galileian transformation, i.e. a
velocity shift. The statistics of space-time structure are
usually strongly dependent on velocity shifts, unlike
spatial rotation. The effect of time dilation is usually
quite different from spatial dilation, and both usually
affects the statistics of movement dramatically, as can be
seen when a movie is played at the wrong speed. In
forward-looking imagery the situation is even worse, as
there is no longer invariance with respect to the vertical
image co-ordinate, or to spatial orientation.

The complexity of space-time image structure can be
seen with forward-looking imagery of sea glint (Fig. 7).
A bank of simple 3x3x3 space-time bar filters has been
applied to pick out bars with 13 different orientations.
Their statistics are very complex for sea glint, as shown
by Fig. 8, where the thresholds for an exceedance
probability of 10% are compared. These filters have
been normalised to give identical exceedance rates in
Gaussian white noise. With this forward-looking imagery



much of the spatial symmetry is lost also, as the clutter
strength is strongly dependent on the vertical image co-
ordinate y and also on spatial orientation, with stronger
returns from horizontal bars and edges than vertical ones.

The wavelet transform has fewer advantages when
applied to time-sequence imagery than to static images
because of the above lack of symmetry. The
conventional 3D wavelet transtorm applies a single
dilation operator, whereas space and time should be
scaled independently. It is possible, however, to employ
a non-homogenous form of 3D wavelet analysis [18] to
scale space and time independently.

The approach of using a bank of matched filters involves
looking for unusually strong responses from each filter,
regardless of the responses from the other filters, and so
requires knowledge only of the univariate statistics of
single filter responses. Instead, we consider the
multivariate statistics of a small number of filters which
individually are not as good discriminators of targets and
cutter, but when considered jointly can be more effective
at this task. As with static imagery, we consider a small
number of simple geometric features, oriented bars in
space-time, which in this case represent moving blobs,
where 3D orientation corresponds to the velocity of
motion. The aspect ratio of these bars (ratio of length to
width) is small, about 3, so the resolution in velocity is
low.

We now consider what additional filtering will aid clutter
rejection, in the same way that local energy was used for
intermittent  static  backgrounds  (Section = 4.2).
Conventional target detection methods [19] perform
poorly on sea glint compared to human vision, because
the target detection filters also respond well to sea glint,
not recognising its transience. It is easier to recognise the
target because it doesn’t respond well to a transient
detection filter, than because it triggers a filter tuned to
the target. This leads us to consider the joint statistics of
3D bar filters, weakly tuned to velocity, and simple non-
linear filters measuring the variability in brightness along
the length of each bar:

V= mflx[ X, — mfd(xk ﬂ (20)

where x; are the pixel values along the central axis of the
3D bar. This filter will give a strong response to
intermittent sea glint (flashes) but usually a much weaker
response to a moving target.

The joint statistics of a pair of these filters are shown in
Fig. 9a for sea glint, where an incoming point target has
been simulated which is significantly fainter than the
glint. The target has been marked in Fig. 9a with a cross,
and lies well outside the background distribution, but
like local energy (Section 4.2) it is only by considering
the joint statistics of these filters that discrimination
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between the target and clutter is possible. In some
situations only targets coming head-on, with no apparent
motion, will be of interest. Where lateral motion is also
expected, the above joint statistics could be studied
independently for filter pairs, each tuned to a different
velocity. However, with the extra discrimination
provided by the variability filter, only a low resolution in
velocity is required, and hence a small number of filter
pairs.

Additional discrimination is available by adding a third
measurement to the joint statistics, the vertical image co-
ordinate Y, to take account of the reduction in sea glint
strength nearer the horizon, and also the very different
space-time structure above the horizon (Fig. 9b). The
joint statistics of the bar filter, variability and Y are not
well suited to a parametric model like that involving
local energy (Section 4.2), partly because there are
arbitrary discontinuities, for example at the horizon.
Instead a non-parametric method of conditional threshold
exceedance probability estimation is used, described
briefly next. Details are available in [19].

The idea is to estimate the conditional threshold
exceedance probability of a single target-related
measurement 7 given a set of background-related
measurements B. In our case the target measurement is
the bar filter output, and the background measurements
are V and Y. This method is also applicable to Section
4.2, where the background measurement is local energy
E. The conditional probability can be written:

Pr(T >T,I1B=B8,) 2D

We consider conditional rather than joint probability
because the marginal probability density of the
background measurements are assumed not to be of
interest; for example if V is unusually large, this does not
imply that a target is very likely, only that a transient
glint of unusual strength occurs. If, on the other hand, the
bar filter is unusually strong given a measured level of
glint, a target is more likely. The values of B are of no
significance, other than in conditioning the value of 7.

Estimating the probability given by equation (21)
requires some sort of local averaging in B, using a
window, assuming the latter has a continuous
distribution. The following is a simple estimator of this
probability:

S exp(- A|B, - B,|)

7 (22)

gexp(— A“Bk -B, “)

where the exponential function is a Parzen window
which gives greater weighting to points which are close
to B, than those further away, and A is the reciprocal of
the radius of the window. As with probability density
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estimation, when selecting A there is a trade-off between
high resolution (A is small) and statistical accuracy (A is
large). We adapt A according to the density of values B
in the neighbourhood of By, so that a large radius is used
in sparse regions and a small radius in dense regions.
This is achieved by choosing A such that the
denominator of equation (22) is a prescribed value which
can be thought of as the number of measurements being
taken into account when estimating the conditional
probability.

Equation (22) is an unbiased estimator of equation (21)
only if the true density is independent of B within the
region of influence of the Parzen window. Where there is
global independence, there is no need for a window
function; estimates of unconditional exceedance
probability will suffice. If there is dependence on B, then
at most points the gradient of exceedance probability will
be non-zero, and thus linear dependence will be a better
model than a constant value (local independence). This
can be seen clearly in the example of Fig. 9a, where
contours of constant density are not parallel to the
vertical axis, but appear to be smooth, implying a linear
model would be a major improvement over a constant
model.

A linear model is defined using the following formula:

ZI(T -T, + L(Bk - B, ))CXP(_ A”Bk - B()H)

;exp(— AlB, - BO||)

(23)

where L is a linear function of the random variables in B
and ¥ is the function which returns 0 if the input is less
than 0 and 1 otherwise. The coefficients of the function L
are estimated from the data using linear least squares
regression but where the data values are weighted
according to the similarity of B to B, and the magnitude
of T, where there is a bias towards large values of 7, so
that attention is given to the tails of the distribution.
Once L is estimated, equation (23) is used to estimate the
conditional threshold exceedance probability.

Figs. 10a and 10b show the 10 events with the lowest
threshold exceedance probability, estimated using the
above method, both on the scatter plot of T against V,
and their corresponding locations within the image. The
sea target is the 2™ most unusual event, with an
extremely low estimated exceedance probability of
1.7x10°%. Without the conditioning with respect to the
background variables, the target exceedance probability
would have been much higher, with the sea glint
dominating the results. From a visual inspection of the
scatter plots (Figs 9a and 9b), the target appears to be the
least probable event, but the point with greatest rod filter
output has been assigned an exceedance probability of
zero. This is a technical failing of the estimation
algorithm; a hard decision boundary is used in the

numerator of equation (23), so whilst uncertainty in the
background random variables Y and V is taken into
account in the Parzen window, there is as yet no
analogous uncertainty in the target variable 7. If there
happen to be no sample values to the right of the linear
decision boundary, the current estimate of exceedance
probability is therefore zero. This limitation could be
rectified by using a soft decision boundary, for example
using the logistic function instead of .

As with many detection methods, temporal consistency
can be used as an additional criterion to improve
performance further. Although in this example the target
has been detected successfully from just a single
snapshot of 5 frames, if the SCR was much less, the
exceedance probabilities of the most intense sea glint
could be as low as that of the target. When the above
analysis is repeated on later groups of frames, the target
continues to have a very low exceedance probability,
whereas the locations of the other low-probability events
within the sea change. Fig. 11 shows the top 40
detections superimposed from each of four successive
time intervals, in which it can be seen that the only
persistent events are the target, a few points on the land
(which are unchanging), plus 3 points within the sky
(which are known to be dead pixels and therefore
constant). Out of these persistent events, the estimated
target probability (ranging between 10® and 10%) is
mugh lower than that of the other events (typically 10~ to
107).
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Fig la: TIMS image with roads and buildings
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Fig 1c: Feature characterisation and reconstruction at low amplitude threshold
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Fig. 2: Detection of ship track in AVHRR imagery using vector wavelets

(a) Band 1 (visible) (b) Band 3 (near IR), with ship track

(c) Detections using wavelet-based (d) Detections using pixel-based
Mahalanobis distance Mahalanobis distance



Fig. 3: IRAS image of celestial background imagery
with simulated point targets embedded
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Fig. 6a: Detections at a threshold of 20 Fig. 6b: Detections at a threshold of 20
based on wavelet intensity (T) based on energy-normalised wavelet intensity (I)

Squares = embedded targets, diamonds = false alarms
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Fig. 7: Sea glint data
Single-pixel slowly-moving target (arrowed) artificially embedded in sea clutter
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Fig. 8: Statistics of responses of simple 3x3x3 space-time bar filters
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Fig. 9a: Joint statistics of rod filter output (T) and variability measure (V)
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Fig 10a: The 10 most unusual events as a result of 3-D statistical analysis,
shown within the joint statistics of rod filter output (T) and variability measure (V)

Fig 10b: Locations of the 10 most unusual events from 3-D statistical analysis
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Fig. 11: Demonstration of lack of persistency of sea glint
Top 40 detections within 4 successive time intervals superimposed
Detections marked with plus, cross, circle and triangle respectively



Invariant Feature Extraction in Wavelet Spaces
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1. Introduction

This paper is concerned with the extraction of geometric
information from signals and images which is suitable
for pattern recognition, but which is as insensitive as
possible to the conditions of data collection, in particular
sensor noise, background clutter and changes in the
geometric relationship between the sensor and the scene
(e.g. 3D viewing aspect). We describe a method of
feature extraction which involves extending wavelet
analysis beyond translation and dilation, leading to
invariance to a greater variety of transformations, as well
as insensitivity to noise and clutter. Feature extraction
involves searching for local maxima in a generalisation
of the continuous wavelet transform, and we describe
how Riemannian geometry is used to aid this process.
Additional topics covered are signal and image
reconstruction, redundancy removal and application to
3D aspect-invariant target recognition.

The analysis of any data, including signals and images,
involves the extraction of  application-specific
information and the rejection of other less relevant data.
Transforming the data into a form where the information
of interest is easier to obtain often facilitates the
analysis. Clearly, general-purpose transformations are
more useful if they transform the data into a form of
information that is relevant to many applications. This is
the case with the Fourier transform because many
phenomena of interest to scientists and engineers are
more simply described in terms of sinusoids than the raw
data samples. The wavelet transform [1,2] is another
example, which has become increasingly popular in
recent years because of its ability to identify both
position and scale, and hence the role it plays in multi-
resolution signal and image processing.

The motivation behind the material covered in this paper
is the desire to recognise objects of interest, but to ignore
other information not of interest, and to segregate the
two as efficiently as possible. However, as with the
Fourier and wavelet transforms, we wish the method of
analysis to be as generic as possible, so rather than
attempting a high-level characterisation of the sensor
data, for example the classification of military targets, a
lower-level characterisation in terms of simple geometric
features such as sine waves or compact wavelets is
sought. The aim is to represent application-specific data
as combinations of these lower-level features.

There are two categories of data which we wish to
ignore, or at least separate from the object of interest:

e Noise and clutter. We aim to ignore this by selecting
a subset of the above geometric features, related to
the information of interest, and rejecting the
remainder. The feature decomposition should be
designed to facilitate this selection.

e Information describing the geometric relationship
between the sensor and the information of interest,
not the information itself. For imaging sensors this
comprises range, bearing and 3D orientation of the
objects being viewed. For acoustic and radar sensors
this comprises range, time of arrival, multipath,
Doppler shift and possibly other effects such as
distortion. These variables are sometimes called
nuisance parameters. We aim to reject this
information by constructing canonical forms
(Section 6) which do not depend on this geometrical
relationship.

We thus conceptually segregate the signal or image data
into information of interest, the foreground, and the
remainder, the background. The extraction of
information from the data is now analogous to the
detection and characterisation of the foreground and the
rejection of the background, where a detection occurs
when a foreground feature is extracted from the data.
The extracted features can therefore be interpreted as the
output from a set, or dictionary, of detection filters
applied to the signal or image. This dictionary depends
on the application; the foreground and background
should be easy to segregate based on the outputs of the
filters it comprises. The Fourier dictionary, sines and
cosines (or complex exponentials), is suitable for
foregrounds with strong harmonics, and has the
additional advantage that the amplitudes of the Fourier
coefficients are translation-invariant. The wavelet
dictionary comprises all translations and dilations of the
mother wavelet, and so is suitable if the position and
scale of the foreground objects in the signal or image are
not known a priori.

In general, an economical but complete representation of
the signal or image is sought in order that the
information of interest is easily extracted but still fully
represented. A conventional approach to achieving
economy and completeness is to use a fixed basis for the

Paper presented at the RTO SCI Lecture Series on “Application of Mathematical Signal Processing Techniques
to Mission Systems”, held in Koln, Germany, 1-2 November 1999; Paris, France, 4-5 November 1999;
Monterey, USA, 9-10 November 1999, and published in RTO EN-7.
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dictionary so that the component functions span the
signal space and are linearly independent, as with the
discrete Fourier and wavelet transforms. However, the
use of a fixed basis constrains the size of the dictionary,
limiting the scope and sensitivity of the signal or image
representation.

More recent developments have therefore considered
adapting the dictionary functions separately to each
signal or image rather than using a fixed dictionary for
all signals. In Coifman and Wickerhauser [3], the master
dictionary is a specially constructed library of
orthonormal bases. An orthonormal dictionary is adapted
from this library in order to minimise the information
content in the representation of the signal. More
generally [4,5], the master dictionary is non-orthogonal,
but a smaller subset is similarly adapted to the signal to
maximise the efficiency of the representation. This
approach is aimed at resolving the conflict between
flexibility, where a large dictionary would ordinarily be
required, and economy, and has been adopted both in the
Wavelet Packet Transform of Coifman et al [4] and also
in the Matching Pursuit algorithm of Mallat et al [5],
where in both cases the functions are chosen or
generated to give the best approximation to the signal or
structures within the signal.

This paper considers a variant of the Matching Pursuit
algorithm, in which the master dictionary is a manifold
of infinitely many functions. Like Matching Pursuit, the
idea is to generalise the wavelet transtorm, so that the
dictionary is generated from a mother wavelet, but
includes transformations other than translation and
dilation. This enables the efficient and invariant
representation of a greater variety of foreground
information, for example with variable orientations,
affine transformations, frequency shifts and chirp angles.
Because the dictionary is generated by the action of a
continuous group of transformations on a mother
wavelet, for convenience the method is denoted shape
adaptive wavelet analysis, the dictionary is called a
wavelet space, the constituent functions are called
wavelets, and correlation of the signal or image with
these functions is called the shape adaptive wavelet
transform (SAWT).

We adapt the wavelets to the signal or image data by
select only those whose SAWT are local maxima, in a
manner analogous to Mallat and Hwang [6]. We show
that these functions have three useful properties:

e They are the best local approximations to the signal
or image (6], thus enhancing the quality of the
representation and reconstruction of the original
data (Section 2.4).

e They represent structures with locally maximal
signal-to-noise ratio (SNR), and are thus well suited
to represent foreground information (Sections 2.3
and 2.4).

e The features extracted from local maxima are
invariant under the transformations associated with
the wavelet space, for example translation, rotation
and dilation. This property aids sensor-invariant
pattern recognition (Section 6).

The selected wavelets are not in general orthogonal, but
a method of redundancy removal is presented (Section 5)
which increases parsimony and also simplifies the
process of reconstructing the foreground.

The remainder of this paper is laid out as follows.
Section 2 describes the underlying principles of the
wavelet space, the extraction of geometric features at
local maxima in the SAWT, and how these are related to
matched filters. Section 3 gives an overview of the
methods covered in this paper, including feature
extraction, signal or image reconstruction and sensor-
invariant representation. Section 4 gives details of
feature extraction, including the use of Riemannian
geometry and local co-ordinate transformations to
improve efficiency, and the use of shape-adaptive
wavelets for characterising foreground objects. Section 5
discusses redundancy removal and signal or image
reconstruction. Section 6 describes how canonical forms
are constructed from the above feature decompositions,
which are independent of viewing aspect and related
sensor settings, and their use in aspect-invariant
recognition of aircraft viewed from an imaging sensor.

2. Shape Adaptive Wavelet Analysis

2.1. Matched filters and dictionaries

In this paper we assume all signals and images are real
or complex valued functions defined on the real line (e.g.
acoustic signals), a 2D plane (e.g. grey-level images), or
a higher-dimensional space (e.g. image sequences). We
will develop the theory for complex functions, but the
theory of real-valued functions is very similar.
Expressed formally, we consider functions which are
members of the Hilbert space F, of Lebesgue square-

integrable functions { fR"— C} with the inner product
(fl’f2>: Jfl(”)fz(u)du ey
o

for any two functions f,,f, € F, and ue R". We are
interested in a dictionary of filters which respond well to
foreground information. Here we consider linear filters
only, each of which can be written as the following inner
product:

(fow)=1 Fwlu)du 0)



where f e F, is the signal or image, w e F, is the filter,
n is the dimension of the signal or image and (f,w) is

the output of the filter. We use matched filter theory [7]
to derive linear filters w which will optimally detect a
given foreground signal f when embedded in background
noise with power spectral density NV:

W(w) = L&) 3)
N(w)

where F and W are the Fourier Transforms of f and w
respectively. The matched filter w is, however, as
specific in position, scale and shape as f. To detect (i.e.
distinguish from the background) a wide variety of
foreground structures requires a large dictionary of
filters {w}, so in this paper we consider dictionaries

with a manifold structure, where the dimension is
typically 3 or more.

2.2. The wavelet space and SAWT

Shape adaptive wavelet analysis transforms a signal or
image into a linear combination of dictionary functions,
in common with the Fourier, Wavelet and Wavelet
Packet Transforms. The dictionary, called the wavelet
space, is a C* manifold (continuously differentiable to
second order) of infinitely many functions called
wavelets which are chosen to enable us to detect
structures in the signal or image which provide
information of interest. Because the wavelet space is a
manifold, for each wavelet w in the wavelet space there
is a chart (co-ordinate system) ¢:W — R" which maps
the wavelet to a vector x = ¢(w) where the elements in

this vector are the wavelet’s co-ordinates with respect to
the chart ¢. We have a lot of freedom of choice of the
chart, and as we shall see in Section 4, carefully
constructed charts benefit feature extraction.

We use the inner product given in equation (2) to define
the following real- or complex-valued function on the
wavelet space,

T, (w)=(f,w), (4)

which in the context of this paper is called the Shape
Adaptive Wavelet Transform (SAWT). This function,
analogous to the continuous wavelet transform,
represents, at least in principle, the action of the entire
dictionary of filters in the wavelet space W on the signal
or image f.

Examples of transforms and ‘wavelets’ in common use
are:

e The continuous Fourier Transform [8], where the
‘wavelets’ {w} are (untruncated) sinusoids

parameterised by frequency.

33

e The continuous Wavelet Transform [1,2], where the
wavelets {w} are translated and scaled versions of

the mother wavelet, parameterised by position and
scale: :

wp,...mzs-%w[“f’j 5)

N

e The Short Term Fourier (Gabor) Transform [1,2],
where the wavelets are truncated sinusoids, typically
multiplied by a windowing function A, and are
parameterised by position and frequency:

Wﬂ-f(t) = h(t - p)esz(f'p) ©

e The Hough Transform [9] for images, where the
wavelets are traditionally taken to be lines
parameterised by gradient and intercept.

2.3. Whitening

Each of the above transforms can be used to optimally
detect signal structures which approximate the respective
dictionary functions when embedded in uncorrelated
(white) noise, because for this type of background the
matched filter is identical to the signal or image structure
being sought. Thus the Fourier Transform is an optimal
detector of sinusoids, the Wavelet Transform is an
optimal multi-resolution detector for the mother wavelet,
the Gabor Transform is an optimal detector for truncated
sinusoids and the Hough Transform is an optimal
detector for linear features in images. Where the
background is correlated (not white) the wavelet filters
{w} can be interpreted as the optimal detectors (matched

filters) for the related signal or image components {}
given by:

V(w)=W(@)N(a) )

where W and V are the Fourier Transforms of w and v
respectively, and N is the power spectral density of the
noise. In practice it is much easier to apply an invertible
spectral transformation to the signal or image to whiten
the noise before applying the shape adaptive wavelet
transform. In the Fourier domain, such spectral
transformations have the form

F(0)= MF%)) ®)

where F is the unwhitened signal or image, F’ is the
whitened version of F and where M is chosen to satisfy
|m (g,;}2 =N(w) with N the background noise.

Henceforth, we therefore assume that the background is
pre-whitened.
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2.4. SAWT, SNR and approximation error

We now explain how the wavelet space and the SAWT
are used to extract foreground information from a given
signal or image. Suppose our given signal or image is a
Gaussian white noise random process. For a given point
(wavelet) w in the wavelet space, the variation of the
SAWT at that point will also be Gaussian with zero
mean, so the statistics of the response are characterised
entirely by standard deviation. This in turn is
proportional to the L, norm of w:

o(N)ex | [lwef du = o], ®
@

If all the wavelets in the wavelet space have the same L,
norm, then those wavelets {w, } at the local maxima in

the modulus of the SAWT are seen to represent the
signal components with the locally highest SNR, which
can be interpreted as being most likely to belong to the
‘foreground’ of interest and not to the ‘background’ if
the statistical distribution of the SNR values is being
considered. We therefore normalise all the wavelets in
the wavelet spaces considered in this paper to unit L,
norm. This is why there is a scale factor s dividing the
conventional position-scale wavelet transform.

Not only do the local maxima represent signal
components most likely to be foreground, but, as we
show next, they are also the best local approximations to
the signal data. In considering such approximations we
need to define an appropriate measure of approximation
error. We require the approximation of the signal
represented by the wavelet expansion to be stable with
respect to the background. Differences between signals
should therefore be measured in terms of their likelihood
of arising at random from the background, so that
“small” errors can be disregarded as being of little
significance. In the case of Gaussian white noise the L,

norm of the difference between two signals is such a
measure of error, and the one that we will adopt in the
remainder of this paper. For correlated backgrounds the
approximation error is derived by whitening the
difference between the signals prior to the calculation of
the L, norm. This error is also the maximum signal-to-
noise ratio of the residual when regarded as a signal
embedded in unit energy noise. Suppose any filter w is
employed to detect the residual f. Then the signal to
noise ratio is given by:

SNR:|_<f’_W>S||f”. (10)
[+
where we have used the Cauchy-Schwarz inequality.
Thus the L, norm is a measure of the difficulty of
detection of the residual using a matched linear filter. If
this quantity is small, it is natural to regard the residual
as being small, and the signals as being similar.

2.5. Approximation with the SAWT

We now show that the best local approximation to the
signal or image is given by the wavelet at a local
maximum in the SAWT multiplied by the value of the
SAWT. First we consider the best approximation of the
signal f with a wavelet w multiplied by the complex
amplitude A, where the approximation error is given by:

E (w,A) = [|f ()~ Aw(w)] du- (11

x"
We temporarily fix w and consider the minimum of
E,(w, A) with respect to A.

Expanding equation (11) we obtain:

E, 0. A =1+l [l ~2Re(T, ). (12

We recall “wlL =1, because the wavelets are normalised
to unit L, norm, and we write A = qe'® and T, (w)= be'®.

Equation (12) then reduces to

E (w,A) =||f|; +|A] -2abcos(8~¢). (13)

We require a minimum of E (w,A) with respect to both

aand 6.

For 6, we see by inspection that 6 = ¢(—_¢- 2n71) and (13)

then becomes

E (w,A)=|f]. +a* - 2ab . (14)

For a, we partially differentiate E f(w, A) with respect

to a and equate to zero to get:

a=bi A=T,w):  E (w,A)=|f]~|T, ) -(15)

Thus the local minima of E (w, A) occur at the same

locations in the wavelet space as the local maxima of the
modulus of the SAWT, and the optimal amplitude A is
then given by the SAWT value at this point.

The equivalence between local maxima of the SAWT
and local minima of the error measure is of considerable
benefit when searching for local approximations of the
signal. Our local approximation to fis given by Aw, so to
find the best wavelet Aw directly, we would need to
search over the whole space CxW ; however, the
equivalence of local maxima of the SAWT and local
minima of the error measure allows us to search merely
for the best wavelet w. The amplitude A is then given by
the value of the SAWT at this point. We can thus search
over a space with dimension dim(W) instead of
2 + dim(W), and as search times increase exponentially
with dimension, this is of considerable benefit.



3. An overview of the method

The first stage in shape adaptive wavelet analysis is the
search for local maxima of the SAWT. This search is
conducted as follows:

e Conduct a grid search for local maxima of the
SAWT over a low-dimensional sub-manifold of the
wavelet space.

e Locally optimise in the full wavelet space each of
the local maxima found above.

e Record the amplitudes and positions in the wavelet
space of the local maxima as discrete features, for
application-specific analysis.

e If background rejection is required, select only the
features that belong to the foreground. With L,
normalisation, the simplest method is to set a

threshold on the SAWT; this is best for Gaussian -

noise. For more intermittent backgrounds the

selection criteria are more complex, and covered in
[10].

e If sensor-invariant recognition is required, convert
the discrete features into a canonical form in which
‘nuisance parameters’ are removed.

We describe the first two stages in detail in Section 4
and show how consideration of the geometry of the
wavelet space enhances the efficiency of the search. The
fifth stage is covered in Section 6. If accurate
reconstruction of the signal or image data is required, the
following additional stages are also involved (Section 5):

e Redundancy removal. The wavelets at the local
maxima in the SAWT are not always orthogonal, so
in general there is redundancy in the SAWT at the
local maxima. Although redundancy removal is
required for accurate signal reconstructions, it is
often not required in further analysis, for example in
detection and sensor-invariant recognition.

e Wavelet subtraction. This method extends the
wavelet representation to represent the signal or
image to any required accuracy, allowing full
inversion of the transform in the limit. This step is
usually not necessary when background rejection is
involved.

4. Feature extraction

We now describe how the signal or image is decomposes
into a discrete set of features, each a function from the
wavelet space located at a local maximum in the SAWT.
There are two stages:
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e Conduct a grid search for local maxima of the
SAWT restricted to a low-dimensional sub-manifold
V of the wavelet space W. This sub-manifold could
be the entire wavelet space if sufficient computation
is available, but in higher dimensions this is
generally not the case.

e For each local maximum above a given threshold
(usually dictated by ambient noise) in the above grid
conduct a local search for the nearest local maxima
of the SAWT in the full space W.

This method, of course, will not guarantee the detection
of all the local maxima of the SAWT, but this guarantee
would necessitate limiting the dimension of the wavelet
space for reasons of computational feasibility, which is
no better. The local search provides the opportunity of
improving the approximation to the signal or image
without increasing the search time exponentially.

A truly global search over any non-trivial sub-manifold
is not possible (unless the SAWT is band-limited)
because there are an infinite number of SAWT values to
calculate; hence, a finite grid is chosen in such a way
that the SAWT at other points can be predicted
approximately. To do this efficiently, however, we first
endow the wavelet space with a Riemannian metric that
quantifies the expected variability of the SAWT. We
then construct such a metric and show how it can be
used to determine the size of the grid (Section 4.3) and
also aid the subsequent local optimisation, considered
next.

4.1. Local optimisation

There are numerous “off-the-shelf” local optimisation
methods reported in the open literature [11,12] and
implemented in computer software, whose effectiveness
depend strongly on the type of cost function to be
optimised. We take advantage of the second-order
differentiability of the wavelet space (Section 2) to use a
differential search method which is similar to the method
of conjugate gradients [11], but where we take account
of the above Riemannian metric. Not only is the SAWT
smooth, but its partial derivatives can be computed
analytically by differentiation of equation (2):

aT,(w) 9 w(u)du )= o)
Tx,_—— = a_x'.(’.R" f(u)w(u)du)" ."R" f(u)*a:du

(16)

where the differentiation is done under the integral sign
with respect to the wavelet co-ordinates x;, not the
independent variable « of the wavelet functions. This
method can be more efficient than using approximation
by finite differences, although sometimes analytic
differentiation of the integrand is messy.

Local search methods based on partial derivatives tend
to operate more efficiently if the variations in the SAWT
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in each direction are of similar magnitude. For example,
the conventional wavelet transform applied to
1-dimensional signals is a function of two variables:
position and scale. At small scales the variability of this
function is much greater with respect to position than
scale and at large scales the opposite is true. This
asymmetric behaviour results in narrow ridges and
valleys in the cost function and reduces the efficiency of
search methods, which navigate these irregularities using
expensive calculations of the cost function. The
Riemannian metric, defined next, quantifies this
asymmetry, the latter being co-ordinate dependent, so we
choose local co-ordinates for which this metric is
spherically symmetric.

4.2. Wavelet space metrics
We define the following metric 4 : W xW —[0,1]:

d(wl,wz)zl—le,w2>|, (17

for all w,w, e W. We show below that this choice of

metric describes the variability of the SAWT, both
statistically in white noise and deterministically. First we
consider the deterministic case. Let w, be a wavelet in
the wavelet space. We define a metric ball B(w,,€)

centred at this wavelet to be given by:

B(w,,&)={w, e W :d(w,,w,) <e}. (18)

Because |<f, w)‘ = |<f,ei9w>1 for all 8, we can choose 0

for any particular choice of w; and w; so that

e’ (19)

(Wl,w2>=l<»v,iw2>

Using the Cauchy-Schwarz inequality it then follows
that:

ICORIAUS B Ry S VRS

< |<f,e-i9Awl - w2>|
<[1#[, e 7w, - ws ||2 (20)

- ||f||ﬂ}2 ~2Rel(e™w,,w,))

=||f"2 2_2|<W1’W2>
sv2e |1,

Not only does (20) give an upper bound on the
variability of the SAWT within a metric ball, it also
shows that if the wavelets in the wavelet space vary
smoothly with respect to a chart or co-ordinate systems,
then their SAWT values will also vary smoothly.

We now take the SAWT to be real-valued and consider
the statistical case. Let n be a Gaussian white noise
random process. The difference in the SAWT values of

the wavelets w,_ and w,e B(w,g) is given by
(”»Wn —w2> which has a mean of zero and a standard

deviation proportional to the L, norm of w, —w,. The
later is given by

"Wl -W,

, =42-2(w,w,) @0
which for 1> ¢ >0 gives HWI - wznz gﬁg.

Our choice of metric is in general expensive to compute,
involving the construction of the wavelets from their co-
ordinates and then integration over their common
support to evaluate the inner product. We therefore
employ a less expensive metric, which has similar
properties. We define a Riemannian metric [13]
R, dx“dx" at the wavelet w to be half the second co-

variant tensor derivative of metric (17) where the first
wavelet is fixed at w, and differentiation is with respect
to the second wavelet. In practice, this metric is a second
order local approximation of (17) because the first
partial derivatives are zero, and thus

Ryds'dx” =1-w w, ) +ola®]  (22)

4.3. Wavelet grids

Before explaining how to calculate R, efficiently, we
show how it can be used to construct global search grids.
Suppose that a grid consisting of wavelets {v } in the

sub-manifold V cW is chosen whose metric balls
{B(V*,g)} cover that part of the sub-manifold to be

searched. From (20), we know that by choosing ¢ >0
small enough, we can conduct a global search for SAWT
values above a given threshold, T say, by evaluating the
SAWT once in each of the metric balls {B(v,,¢)} and

testing against a slightly lower threshold of T(l -2 )

The Riemannian metric determines to first order in local
co-ordinates the size of the metric balls {B(v,, )}, and

thus the resolution required for the initial grid used in the
global search. It is therefore sufficient to construct a grid
whose spacings dx are to second order constrained by:

R dx"dx" <€¢. (23)

ab

4.4. Local co-ordinates and group actions

In general the Hessian (matrix of second derivatives) and
thus the Riemannian tensor are expensive to compute,
being different at each point in the wavelet space, but by
augmenting the manifold with additional group structure,
we can derive the Hessian at any point in the wavelet
space from the Hessian at a single point. The additional
structure comes by considering group actions on
wavelets. We now consider wavelet spaces which are the



orbit of a single (mother) wavelet w, (analogous to the
mother wavelets used in Meyer [1]),

W=0G.w,={g.w,: geG} (24)

under a group G. All the examples of wavelet spaces
considered in Section 2 have this group structure:
Fourier transforms involve frequency shifts, wavelet
transforms involve translation and dilation, and Hough
transforms involve translation and rotation, In order to
maintain the normalisation of the wavelets, we also
require that G is isometric, that is it preserves inner
products. As we now show, the group action provides us
with a means of deriving a local co-ordinate system at
each wavelet w in the wavelet space in which the
Riemannian tensor at w is identical to the Riemannian
tensor at the mother wavelet.

We define the function p: G — W from the group to the
wavelet space by

P g 8w, (25)

Because G. wy, spans the wavelet space, we can choose a
canonical function ;W — G from the wavelet space to

the group to be a right inverse of p, i.e. pog isthe
identity map on W. We then have

g:wt>g where gw =w, (26)

i.e., g is chosen to canonically map the wavelet w to a
group element whose action on the mother wavelet
produces w.

For any two wavelets w ,w, €W we consider the
following combination:

w= p(q(wl )q(wz ))’ 27

which allows us to define an isometric transformation
between local co-ordinate systems which preserves the
co-ordinates of the Riemannian tensor. Let ¢:W — R”
be a local co-ordinate system for which the Riemannian
tensor is equal to R at the mother wavelet w, and let
w’e W be any other wavelet, then the local chart which
makes the co-ordinates of the Riemannian tensor equal
to R at w’ is given by

c:wi ¢, o plgwg(w)). (28)

To see that this transformation is isometric, let
w,=c"(x) and w_=¢'(y) for the two charts given
above, and choose any two wavelets w ,w, e W. From

equations (25) and (28) and the isometric nature of G, it
follows that

(woow.) = (pla®alw, ) platale, ))
(a()alw, Iy a0 alw,, Jw,) (29)
(alw, Do, qlw,, Jw,)

<w)'1 ’ W_V: >

1l

Il

We thus need only evaluate the Riemannian tensor from
the Hessian matrix at one point in the wavelet space, and
use equation (28) to derive this tensor at any other point.
If we design a local co-ordinate system which has “good
behaviour” at any point, then this co-ordinate
transformation provides us with a means to transport this
behaviour to any other wavelet in the wavelet space. In
our case (Section 2.4) we would like the Riemannian
metric to be spherically symmetric, which is done by
designing a local chart for which the Riemannian tensor
R, 1s the identity matrix. It is always possible to do this
because the tensor is symmetric positive definite, so an
orthogonal set of eigenvectors can be found and

" normalised so that the diagonal elements of this matrix

are unity. If R, has the
decomposition

following diagonal

R=UDUT (30)

with respect to the chart ¢, where D is diagonal and U is
unitary, then the required local co-ordinate system ¢ is
given by solving

¢, = D2Uc, (w). (31)

4.5. 1D example: Acoustic signals

To characterise acoustic signals, we consider the Hilbert
space F; of l-dimensional signals, a mother wavelet
w,€F, and a 4-dimensional group G of signal

transformations defined by

[(p,s,a,b)flt) = % f(t——s—pLz l[ﬂ(t_Tp]’b(’_Tp)] (32)

and parameterised by translation p, dilation s, frequency
shift a and chirp shift b, where a and b are normalised
with respect to dilation. Examples of these wavelets are
shown in Fig. 1. Group multiplication is defined to be
the composition of these mappings, and in the above co-
ordinate system is given by:

P P> Pt s,

5y S, 515, . (33)
x =

a a, (al +2bp, )Vz +a,

b, b, bIS§ +b,

The wavelet space W is defined to be the orbit of wy
when acted upon by G, and is thus the set of translations,
dilations, frequency and chirp shifts of the mother
wavelet wy. These functions are sometimes called
chirplets. In this particular case there is a one-to-one
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correspondence between G and W, so it is possible to
identify each wavelet with its group action on the mother
wavelet, and use the same co-ordinate system for both.

This chirp wavelet space W = G.w, is a superset of the

dictionaries used in the Fourier, Wavelet and Gabor
Transforms. Any section of the SAWT restricted to
constant @ and b is a conventional Wavelet Transform
parameterised by position p and scale s. The parameters
a and b determine the shape of the mother wavelet in
each of these sub-manifolds.

The initial search for local maxima in the SAWT is
restricted to the 3-dimensional sub-manifold where the
chirp angle b is =zero. This subspace can be
parameterised by position, scale and ordinary frequency
a’=a/s. The Riemannian tensor with respect to these
co-ordinates is given by:

As? 0 0
R=| 0 Bs? 0 34)
0 0 Cs?

where A,B,C are constants which depend on the mother
wavelet. An approximately Gaussian envelope was
chosen for the mother wavelet which is of compact
support and continuously second differentiable, ensuring
that the SAWT is equally smooth. We require a search
grid for which the Riemannian metric is as even as
possible for an even coverage of the wavelet space.
Equations (20) and (23) imply that the spacings dp and
ds should be proportional to scale s and the spacing da’
should be inversely proportional to scale where the
constants of proportionality are given by the reciprocals
of the square roots of A,B and C. A grid meeting these
requirements is obtained by dividing the sub-manifold
into sections of constant scale, and in each section
defining a regular rectangular grid where the spacing in
position is proportional to scale and that of frequency
inversely proportional to scale, so that different grids are
used at different scales. The scales themselves need to be
a geometric sequence to generate the correct spacings ds.

The SAWT at each fixed scale, essentially a Gabor
Transform, is computed efficiently as a set of windowed
FFT’s. With a Gaussian envelope a low resolution in
scale is required, with powers of 2 usually being
sufficient, in which case a scale range of 1000:1 is
covered with only 10 scale intervals and 11 Gabor
Transforms. The complex exponential wavelets are
better suited to characterising an analytic signal, where
there is no energy at negative frequencies in the Fourier
Transform, than a real-valued signal, which has equal
energy at positive and negative frequencies. For real-
valued signals the Hilbert Transform is applied first to
create an analytic signal, where sinusoids are converted
to complex exponentials.

The use of complex exponentials in the wavelet has a
number of advantages over real sinusoids. The phase of
the sinusoid is controlled by wavelet amplitude and so is
not required as an additional parameter in the search
space, making the search more efficient. A single
wavelet in the signal data results in a single local
maximum in the SAWT in the complex case, whereas
there are usually many local maxima in the real case,
caused by the sinusoid in the signal being alternatively in
and out of phase with the filter. The lack of "side-lobes"
in the complex case greatly reduces the redundancy of
the wavelet characterisation. The smoother SAWT also
enables the local search for local maxima to work more
efficiently. The group G is also easier to define in the
complex case.

Fig. 2 demonstrates the chirp wavelet representation on
an example of an underwater acoustic signal attributed to
dolphins. Fig 2a shows a spectrogram (Gabor
Transform) of the signal data, showing the variation of
signal energy with time and frequency, in which several
coherent structures can be perceived against a noisy
background. Fig 2b shows the corresponding
spectrogram of a signal reconstruction from a chirp
wavelet decomposition, which has extracted most of the
interesting structure. Only 15 chirp wavelets are used in
the characterisation, demonstrating the economy of the
method. The wavelets cover a wide range of frequency,
scale and chirp angle, and it would not be possible to
characterise this data as efficiently with more limited
dictionaries such as the Gabor or Wavelet dictionaries.

4.6. 2D example: Sea surface imagery

To characterise 2D imagery, we consider the Hilbert
space F, of images, and we take our wavelet space W to
consist of the Gaussian ellipses:

2.2
s° agas

U 2 v 2
w(x.):.\‘.{)‘u)(u’ V) =exp| - (—2_ + ]

where

(UWZ[COSQ —smﬁru—xw (35)

V} sinf  cosé AVTY,

Our wavelets thus have a chart to R®, where (x, y) is the
position of the centre of the wavelet relative to some
origin, s is the scale of the wavelet, a is its aspect ratio
and @ is its orientation with respect to the y-axis. We
choose the constant g, to be larger than unity to remove
a co-ordinate system singularity which occurs because of
the lack of effect rotation has upon wavelets with aspect
ratio one.

The natural choice of image transformations for this
wavelet space would contain translation (for position),
dilation (for scale), rotation (for orientation) and
stretching (for aspect ratio); however, the smallest group



containing these transformations is the affine group,
which is six-dimensional, and includes skew
transformations. We parameterise this group G as
{(A,b)} where A is a 2x2 matrix composed of rotation,
dilation, stretching and skew transformations, and where
b is a column vector representing translation. We define
group multiplication to be given by

(A5 XA b,)=(AA, Ab, +b,), (36)

and the inner product preserving group action on F; to be
given by
[(A. 6)wlu)= wlA w-p) G

1
1/det(A)
forall we F,.

Unlike the previous example, the parameter spaces of the
wavelet space and the group can now no longer be
directly identified with one another by judicious choice
of charts. Indeed, while the group G can only be charted
to 6-dimensional Euclidean space, the wavelet space W
has been charted to S5-dimensional space. This means
that the co-ordinate versions of the functions p:G - W

and g:W — G used in the chart transformation (28) are

no longer trivial. We could have removed this difficulty
by choosing a chart mapping the wavelet space to R®,
but this would have increased the dimension and thus the
difficulty of searching for local maxima in the SAWT.

The initial search for local maxima is restricted to a 4-
dimensional sub-manifold with the bar aspect ratio fixed
to 3, that is fairly broad bars. In most wavelet spaces
four dimensions is too computationally demanding, but
for broad bars the SAWT is insensitive to orientation and
scale, so only a small number of combinations of these
parameters is required in the search grid. Where there
are long narrow objects, such as the ship wakes in Fig. 2,
the local search for unconstrained local maxima in the
SAWT extends the broad bars along these structures.
The SAWT is much more sensitive to orientation for
narrow bars than broad bars, but this and other
dependencies on location in the wavelet space are
removed by the local co-ordinate systems defined in
Section 4.4.

Fig. 3 illustrates the use of bar wavelets to detect and
characterise ships and their wakes from electro-optic
imagery of the sea surface. Both extended structures, the
wakes, and a more compact structure, the ship, are
characterised efficiently by this method. The ship’s
course, including speed and direction, can be accurately
inferred from the wavelet parameters, including the
change in course half way along the wake.
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5. Removing redundancy and reconstruction

In general the wavelets {Wk} detected as local maxima

in the SAWT are not mutually orthogonal. This has two
undesirable effects:

e More wavelets than necessary may be required to
represent a given signal or image (or the
foreground) with a given level of accuracy.

e  Optimal reconstruction is no longer obtained by the
linear  superposition  of  single  wavelet
reconstructions.

Traditionally these problems are avoided by designing
the wavelet basis functions to be orthogonal, for example
using the wavelets of Daubechies [2]. This approach is
fundamentally incompatible with optimisation in a
differentiable manifold of dictionary functions because
there is an open neighbourhood B(w,,¢) of each

wavelet w; in which Kw,,w2>| is greater than zero. The

inherent flexibility of the local search method, where
local approximations to the signal or image are
optimised, and where there is potential for fine
adjustments to the wavelet parameters, is incompatible
with the necessary constraints required for orthogonality.

5.1. Gram-Schmidt orthogonalisation

We therefore remove the constraint of orthogonality in
the wavelet decomposition and instead remove
redundancy either by excluding wavelets or by adjusting
the coefficients in the wavelet series expansion, initially
given by the SAWT. The process is based on Gram-
Schmidt  orthogonalisation, where a temporary
orthonormal basis {e } is constructed as linear

combinations of wavelets {Wk} extracted as local
maxima in the SAWT. The new basis functions are
given by:

n—i E
E—w - S w.ede . e =Lt (38)
n Wn Zl, (Wn ek )ek eu "En"

where fis the signal or image data. Instead of calculating
the signal or image functions {E,} and {e,} directly,

we calculate recursively the coefficients of the linear
combinations of {w, } from which they are constructed

using equation (38).

Unlike ordinary Gram-Schmidt orthogonalisation, the
order in which the wavelets {Wk} are chosen is not fixed

but is adapted to maximise the rate of decrease of the
residual sum-of-squares error. This is achieved by
choosing w, to maximise the inner product:

1=[(f.,) (39)
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which in turn minimises the residual sum-of-squares
error given by:

lf—é(f,edek

2

. (@0

n—t

=|f_z<f’ek>ek

The process stops when the values of / for all the
remaining wavelets {w;} are below the amplitude

threshold for unusual objects, that is when none of the
wavelets contributes sufficient information about the
signal data f which is independent of the wavelets
already included in the expansion. The value [ for each
remaining candidate wavelet w, is derived from the inner
products {f,w, ) and (w,,w,), where the former is

given by the SAWT (4) and the latter are independent of
the signal and depend solely on the wavelet parameters.
The following recurrence relations are used to derive I:

n—1

(fow)=2(fre e w)

o (41)

=Sk

(fie)=

5.2. Wavelet subtraction

The above wavelet expansion is generally a good
approximation to the signal or image, but is not usually
an exact representation, and therefore not in general
invertible. In cases in which the background is not of
interest and its rejection is required, the incompleteness
of the representation is usually not a drawback as the
residual error is dominated by information which is not
of interest. In situations where the accuracy of the
wavelet reconstruction is not sufficient, however, a
process called wavelet subtraction is employed which
adds further wavelets to the expansion to achieve an
arbitrarily small residual.

The wavelet subtraction process starts with a wavelet
expansion from local maxima in the original SAWT with
redundancy removed using Gram-Schmidt
orthogonalisation. The signal reconstruction from this
expansion is then subtracted from the original signal to
leave the residual f,. A new wavelet expansion is then
computed for the residual f,, in which local maxima of a
new SAWT are computed. The new wavelets are then
added to the original set and redundancy removal is
repeated for this union. This process is repeated until the
required level of accuracy is obtained.

6. Sensor invariant representation

We now consider how to represent foreground
information, with the aid of the wavelet features
extracted using shape adaptive wavelet analysis, in a
manner which depends as little as possible on the
relationship between the objects being viewed and the
sensor. A frequently encountered example of this [14] is
the dependence of the relative 3D position and
orientation of the object and an imaging sensor. This
example will be considered in this paper to illustrate the
method. Another example is the effect of range and
relative velocity on acoustic data, where range affects
amplitude and timing of acoustic transients, and changes
in velocity cause a Doppler frequency shift.

6.1. Sensor-related transformations

In general we represent sensor-related effects as a set of
possible transformations G acting on the signal or image
data. The objective is to derive from the wavelet features
a set of numbers which does not change under the action
of any transformation in G, but from which all other
attributes of the ensemble of features can be determined
uniquely. If this objective can be met, these numbers can
be used to classify objects in a sensor-invariant manner.

Given a set of image features {w'}l' , that represent some

real-world object, and a transformation ge G, we can

form another set of features {g.wi}’ , where g.w; denotes

the action of the transformation g on the wavelet feature
w;. (We encountered a stmilar situation in Section 4.4,
where the wavelet space itself was generated as the orbit
of a group of transformations acting on the mother
wavelet.) These feature sets are considered equivalent
because they may represent the same target from a
different viewpoint.

6.2. Canonical forms and alignment functions

Wavelet sets which are linked in this way by a
transformation in G form an equivalence class, and our
approach is to define a unique member for each such
equivalence class, which we call a canonical form. The
parameters of the image features in the canonical form
are the sensor-invariant numbers we require. Qur aim is
to derive this canonical form from any wavelet set
belonging to the same equivalence class, because then
we can characterise the real-world object in the same
way, no matter what the sensor configuration is when the
object is detected. We do this by finding an element g in

G which will transform any given feature set {wl}l' to
the canonical form {g.w,}l” = {c,}' . The transformation
g will depend on the set {W,}I” but will transform

equivalent feature sets to the same canonical form {c,}l' .

To find g, we introduce an alignment function m that



returns a vector of measurements for a given set of
features,

m:{wl,...,wn}!—)x=(x.,---,XN), (43)

where N is the dimension of the transformation group G.
The purpose of the alignment function is to provide
enough constraints on the feature set to fix g. First we
take an alignment measurement of the canonical form,

m(c,,...,c,,)=m(,. (44)

We now find the transformation g that satisfies

m(g'wl"“’g‘wn)=m“. (45)

This involves solving a set of simultaneous equations,
and we choose the alignment function such these
equations are non-singular, and ideally easy to solve, for
example by being linear. The transformation g will then
also satisfy

{g.wl,...,g.wn}——-{c,,...,cn}. (46)
To see that the canonical forms are invariant under group

transformation, suppose we have another set of features
from the same equivalence class

{h.w,,...,h.w” } (47)

The transformation which ensures that the alignment
function applied to these features matches the canonical

alignment measurement m, is then gh™'. When applied

to the new features we once again produce the canonical
set

fonhow,ccogh™how, } =

few.ogw,}
ey}

(48)

6.3. Example alignment functions

We now consider three examples of alignment functions,
each requiring a choice of features from the set
comprising the foreground, which we call anchor
features. The choice of anchor feature(s) leaves an
ambiguity in the canonical form; however, for a small
number of anchor features and a moderate number of
foreground features, the number of permutations is
manageable. In the examples given in Section 7.2, the
number of wavelets is of the order 5 and the number of
anchor wavelets no more than 3, so the number of
permutations typically 20 or less.

The first example is applicable to any wavelet
decomposition  for  which  the  sensor-related
transformations are the same as the group generating the
wavelet space from the mother wavelet (Section 4.4). In
this case we consider the alignment function which
returns the co-ordinates of one of the features in the set:

o, )=w) (49)

where w| are the co-ordinates of the chosen wavelet w,

for some co-ordinate system. We choose the anchor

wavelet to be the mother wavelet. The canonical
. ’ ’

alignment measurement then becomes ¢ = w,. We now

make use of the mapping g defined in equation (26) of
Section 4.4 which associates group actions with
wavelets. In the case where there is a one-to-one
correspondence between the wavelet space and the group
generating it, g is bijective, and the group transformation
which satisfies equation (45) for our particular alignment

function is q(wI Y'. The canonical wavelets are then

produced through application of q(wl )_' to each wavelet
in the set

LY i oqw ' w, ) (50)

The values in Equation (50) represent the relationships
between each image feature and the anchor feature, and
these relationships, being group quotients, are invariant
under the action of the group.

There are many examples of wavelet group actions
where g is bijective, for example any group spanned by
any combination of translation, dilation, and frequency
shift, including the wavelet and Gabor transforms. The
above technique applied to features generated by the
Gabor transform is therefore useful for acoustic transient
recognition, being invariant to time of arrival, range and
Doppler shifts.

The next two examples concern aspect-invariant
recognition of objects in 3D space viewed at long range,
where we follow the commonly adopted approach of
modelling changes in viewing aspect as affine
transformations in the image of the scene [14]. We use
the wavelet space generated from the affine group acting
on a Gaussian radial basis function (Section 7.2).
Unfortunately the mapping ¢ is not bijective, as there
affine group has 6 dimensions and the wavelet space
only 5, so the alignment measurement is insufficient to
uniquely specify the transformation satisfying equation
(45). Instead, we require alignment functions which
return a 6-element vector, as in the remaining two
examples.

The second alignment function returns the positions of
three anchor wavelets within the set,

f(wl""’wn)z (xw,’ yw,’xwz’ywz"xw,’ yw,)' (51)

With this particular case it is usually possible to identify
uniquely the transformation satisfying equation (45).
Suppose that the canonical alignment measurement is
(x(l Ve X Ve X Ve ) and the affine transformation to

be determined is given by (a,b,c,d,e, f), where
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a b : , :

[ d) is the composite matrix of. scaling, aspect

¢
J

€ .
change, skewness and rotation, and ( ) is the

J
translation offset. The transformation is then determined

by the linear system

X, Y O 0O I OYa X,
0 0 x, », 0 1]b Y,
x, v. 0 0 1 O0fc X,
: : = "l (52)
0 0 x, vy, 0 1}d Yo,
Xy Yoo 0 0 1 Ofe ‘o
0 0 x, y, 0 1]Ff Ye,

If the feature centres are not collinear, the system is non-
singular and therefore has a unique solution. Collinearity
can be detected prior to the derivation of the canonical
form and such cases rejected at an earlier stage in the
recognition process. Anchor features in known target
types can be chosen to be strongly non-collinear, unless
the target has a particularly simple structure, in which
case it should be easy to recognise anyway.

The third alignment function returns the positions and
orientations of two anchor wavelets

f(wl’-“’ w, )= (—xw, > Y, !6w, » Yoy 0 Xy, ’6w2 ) (53)

The transformation satisfying equation (45) s
determined in a similar manner to the previous example.
First, three sets of positions are produced from the
measurement, where the first two correspond to the
positions of the anchor wavelets, and the third set is the
position of the intersection of the major axes of the two
anchor wavelets. Once more there are singularities
within the alignment function, in this case when the two
anchor wavelets are parallel. As in the previous case in
most cases judicious choices of image features in the
canonical form should avoid this type of singularity.

6.4. Examples of 3D Aspect-Invariant recognition

We now present results for example aircraft appearing in
infrared imagery. We first illustrate the uniqueness of the
canonical forms for different aircraft, demonstrating
their potential for class discrimination. Fig. 4 shows
infrared images of the Sukhoi-30 fighter, the B2 Stealth
Bomber and a transporter plane. Fig. 5 shows a wavelet
approximation of each of the aircraft. Notice how the
Sukhoi-30 and B2 have been approximated by wavelets
along the edges of the aircraft outlines, whereas the
transporter plane has had wavelets fitted to the main
fuselage and wings. The canonical forms for these
aircraft are shown in Fig. 6, and their dissimilarity
clearly demonstrates the potential ease with which
different types of aircraft can be distinguished.

In figures 7 and 8 we demonstrate the invariance of the
canonical form to different viewing aspects. Fig. 7
shows four different views of the transporter plane. In
Fig. 8 we show different canonical forms of these
images superimposed to illustrate their similarity. The
three wavelets chosen to be the anchors are the fuselage,
the tail wing and one of the engines. In Fig. 8(a) we
compare the canonical forms extracted from Fig 7(a) and
Fig. 7(b), and in Fig. 8(b) we compare the canonical
forms extracted from Fig 7(c) and Fig. 7(d). Most of the
image feature parameters have changed very little,
indicating that a template classifier would have little
difficulty in recognising the similarity of the aircraft
from this type of representation. This similarity has been
observed for real data, in spite of the limitations of the
affine transformation model, which does not take
account of pixel aliasing, occlusion, non-planarity and
sensor distortion.

In figures 9 and 10 we demonstrate the stability of the
canonical representations of the transporter plane to the
addition of simulated noise to investigate likely
performance caused either by a degraded sensor, or
atmospheric obscuration. There is already some noise in
the original image data, but this data is of higher quality
than could be encountered in poor weather. Each
canonical form been generated using the second
alignment function of Section 6.3, where the anchor
wavelets are chosen to be the fuselage, the tail wing and
one of the engines. Fig. 9(a) shows the image with
Gaussian noise added and Fig 10(a) compares the
canonical form generated by from this image with that of
the original image. Figs. 9(b) and 10(b) show similar
results with a lower SNR, where it can be seen that even
in this case the canonical forms are still very similar.
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Fig. 8: Comparison of transporter canonical representations
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(a) Medium noise (b) High noise

Fig. 9: Transporter image with extra gaussian noise
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Abstract

Multirate filter banks are the fundamental
building blocks of efficient wavelet and wavelet-
packet implementations and are thus an important
part of the current generation of image compres-
sion algorithms. In addition, multirate concepts
also form the basis of local cosine transforms
(LCTs) and lapped orthogonal transforms (LOTs)
which are used in audio compression and noise
removal applications. In this paper, we first dis-
cuss the fundamentals of multirate filter banks,
both theory and implementation. Next, we focus
on applications. In particular, we highlight
wavelet-based image compression because re-
search in this area has been very productive in
recent years. We consider in particular embedded
algorithms such as embedded zerotree wavelet
(EZW) and set partitioning in hierarchical trees
(SPIHT) because of the valuable capabilities they
provide in a variety of military applications. Fi-
nally, we also discuss additional areas in which
multirate filter banks play a roll including inter-
ference excision, signal scrambling, and code or-
thogonal  frequency  division multiplexing
(COFDM) for data transmission.

1. Introduction

The theory of multirate signal processing has
proven itself useful in a variety of applications
over the last ten years. It is in communications,
however, that multirate systems have thus far had
the most impact. For example, the transforms
used today in state-of-the-art image and video
compression algorithms are themselves multirate
systems. The discrete cosine transform (DCT)
used in JPEG and MPEG can be viewed as a
maximally decimated 2-dimensional 64-band
multirate filter bank [1], [2]. Furthermore, the
wavelet transforms used in the best still image
compression algorithms (such as the upcoming
JPEG 2000 standard) are themselves implemented
as multirate filter banks [3]. Multirate filter
banks are also at the center of all of the existing
algorithms for wideband audio compression [4].
For example, the popular MPEG audio layers 1,

" Approved for public release, distribution unlimited
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2, and 3 (the latter called MP3 by many) all use a
32-band cosine modulated multirate filter bank at
their cores. Other algorithms such as Dolby AC-
3 (now called Dolby Digital) and MPEG AAC
(advanced audio coder) use lapped orthogonal
transforms (LOTs) which are simply a special
case of the general cosine modulated filter bank.

While multirate theory has had its greatest im-
pact on compression systems, it has also influ-
enced other areas of the communications field.
In particular, multirate systems form the basis of
time-frequency scrambling methods for secure
voice communications [5] and they are now also
being used to generate broadcast waveforms for
code orthogonal frequency division multiple ac-
cess (COFDM) [6]. Such systems are currently
being used to broadcast digital radio in Europe
and are likely to be used in the future for the
broadcast of digital television as well.

This paper is organized as follows. Section 2
discuss the fundamentals of multirate signal proc-
essing, introducing the concepts of upsamplers
and downsamplers. In Section 3, we introduce
perfect reconstruction filter banks, and in Section
4 we discuss the application of such filter banks
to image compression, wideband audio compres-
sion, noise removal, code orthogonal frequency
division multiplexing, and signal scrambling.
Conclusions are then presented in Section 5.

2. Fundamentals

To describe a digital filter, we use here three
different representations [7]. In the time (or spa-
tial) domain, a 1-dimensional (1D) digital filter is
given by its impulse response h(n) for n € (N,,
N,). If N, and N, are finite, then h(n) is a finite
impulse response (FIR) filter; otherwise, it is an
infinite impulse response (IIR) filter. We can also
uniquely characterize this filter in the frequency
domain by its Fourier transform as

H(e/®)= ¥ h(n)e ™I (1)

or in the z-domain by

Paper presented at the RTO SCI Lecture Series on “Application of Mathematical Signal Processing Techniques
to Mission Systems”, held in Koln, Germany, 1-2 November 1999; Paris, France, 4-5 November 1999;
Monterey, USA, 9-10 November 1999, and published in RTO EN-7.
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H(z)=Y h(n)z™". (2)

From a practical standpoint, we often deal with
a discretized version of (1) called the discrete
Fourier transform (DFT). The DFT calculates the
coefficients of (1) at M sample points: i.e.,

M-1 _j2mkn
Hk)= z h(n)e M 3)
n=0

The two basic operations of multirate digital
signal processing are upsampling and downsam-
pling as shown in Figs. 1 and 2 [8]. To upsample
a digitized signal by a factor L, we add L-1 zeros
between each input value to increase the sampling
rate; to downsample the signal by M, we keep
every M-th sample and discard the rest. The
process of upsampling adds false high frequency
content to the signal in the form of images while
downsampling introduces aliasing into the output
signal. Signal interpolation is accomplished by
following the upsampler of Fig. 2 with a digital
lowpass anti-imaging filter. To eliminate the ali-
asing introduced by downsampling, on the other
hand, we must first filter the input signal x(n) us-
ing an appropriate lowpass filter. Suffice it to say
that even if aliasing is eliminated by prefiltering
prior to downsampling, the lowpass filtering op-
eration reduces the information content of the
resulting signal. This is, of course, completely
consistent with the theory of Nyquist sampling
[7]. Finally, one notes from the example in Fig, 3
that any fractional sampling rate alteration can be
achieved by using the basic integer building
blocks shown in Figs. 1 and 2.

Original

2|
Hinne

Figure 1: Downsampling by 2-- every other
sample is retained.

Original

' \\-42-

Figure 2: Upsampling by 2-- a zero is in-
serted between every other sample.

x(n)—>| 12 = H@) |3 F—y(n)

Figure 3: Decreases sampling rate by 2/3.

Ho(2) fod *2 L

x(n)

Hi@h] 42 |-

*2 -G 1(2)

Analysis Bank

\/

Synthesis Bank

Figure 4: 2-band maximally decimated filter bank (e.g., wavelet).



3. Maximally decimated filter banks
3.1 2-band Systems

Using the multirate operators introduced in
Section 2, we can now describe the maximally
decimated filter bank. A 2-band analy-
sis/synthesis system is shown in Fig. 4 where H,(z)
is a lowpass filter and H,(z) is highpass. Note that
because of the downsampling operations per-
formed in the analysis filter bank, the sampling
density in the transform or subband domain is
exactly the same as it was in the original temporal
domain. This is especially important for com-
pression applications because each of the trans-
form coefficients must be quantized and coded
(i.e., converted into bits) for transmission. This
property is also quite useful in other applications
as well like pattern classification and signal
scrambling [9], [5].

Using basic multirate identities and a little bit
of algebraic manipulation on the system of Fig. 3,
we find that

Y()= 3 [Ho(2Go(2) + K1 2)G1 (2)]- X(2
)
+%[Ho(—Z)G0(Z) +H,(-2)G,(2)]- X(-2)

[8]. The first term in (4) represents the linear
time invariant (LTI) response of the combined
analysis/synthesis system while the second repre-
sents the aliasing introduced into the system by
downsampling. This aliasing can be completely
canceled, however, if we select

Go(z)=H(-2), Gi(z)=-Hp(-2). (5)
Substituting (5) into (4), we see that

Y(z) =T(2)X(z) (6)
where

T(z) = %[Ho(z)Hl (~2)- Hy@Ho(-2)] (7)

is the LTI transfer function of the system. In
general, T(z) may introduce both amplitude and
phase distortion into the reconstructed signal. To
achieve perfect reconstruction, T(z) must have the
form c-z™ for constant c and integer n0.

Perfect reconstruction can be achieved with the
appropriate choice of filters Hy(z) and H,(z). In
particular, assume that H(z) is power symmetric.
This implies that

Hy(2)Ho(z) + Hy(-2)Hg(-z) =1 (8)

where H(Z)EH*(Z_I), indicating that the filter

coefficients are first time reversed and then con-
jugated. To force T(z) to have the desired form

~nl}

c-z™ we can thus select

43

H;(z) =z NHy(-2). 9)

For odd N, (6) reduces to Y(z)= O.SZ_NX(Z) and
perfect reconstruction is achieved! Substituting
(9) into (5), the two synthesis filters are now given

by
Go(@) =2 NHy(2), G(2)=zNH,(z). (10)

Note that all four filters in the system are com-
pletely determined by just one of them! The fil-
ter bank shown in Fig. 3 was first called the Con-
jugate Quadrature Filter Bank when described by
Smith and Bamwell in [10]. It was not truly
popularized, however, until Daubechies showed
that such filter banks could be used to build dis-
crete orthogonal wavelet transforms [11].

While the constraint given by (9) must be satis-
fied if one is to create perfect reconstruction (PR)
orthogonal filter banks and wavelets, it does not
affect the creation to create non-orthogonal PR
systems. In fact, if one wishes to construct a lin-
ear phase PR filter bank (or, equivalently, a sym-
metric wavelet), one must give generally give up
orthogonality and equation (9). By doing so one
can create instead a biorthogonal system such that

Hg(2)Gg(z) + Hyp(-2)Gy(-2z) =1. (11)

Two different filters must now be designed such
that (11) is satisfied-- the remaining two filters are
still determined by (5). If we define P(z) =
H,(z)G,(z), then (11) becomes

P(z)+ P(-z) =1 (12)

which can be satisfied by a half-band or Nyquist
filter. Thus, one need only design such a filter
and then factor it to create the desired orthogonal
or biorthogonal system [8].

;M 3 GO(—ZZ) f—
z_1y —
IMP— G- | T |
Z_1Y : —
» H n
Y {jul{o /

Figure 5: Polyphase implementation of co-
sine modulated M-band filter bank.
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3.2 M-Band Systems

Often it is desirable to split a signal into more
than 2 frequency bands. While one can imple-
ment an M-band decomposition by successively
applying the 2-band filter bank discussed in the
last section, it is often more efficient to implement
it directly. In fact, the most efficient maximally
decimated M-band filter bank capable of achiev-
ing good frequency discrimination is the cosine
modulated filter bank [8]. Here, one designs a
single lowpass prototype filter and then imple-
ments the remaining filters by using cosine wave-
forms to modulate this prototype to higher fre-
quency bands. Figure 5 shows the computation-
ally efficient polyphase implementation of an M-
band cosine modulated filter bank (the powers of
z”' denote delay elements or shift registers). Note
that the filter coefficients belonging to the low-
pass prototype filter H(z) are uniformly distrib-
uted amongst the polyphase subfilters G,(z7).
Thus, the complexity of implementing all M fil-
ters is equal to that of the original prototype filter
H(z) plus the cost of implementing the Mx2M
transform T. The elements of the transform ma-
trix T are given by

N
- =2cos(ﬁ(k+0.5)(n—?)+6k), (13)

where 8, =(~1)*1/4 and N is the order of H(z).
This transform can be implemented very effi-
ciently using a 2M-point FFT plus a few addi-
tional operations.
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The first filter banks designed along the lines
of Fig. 5 were called pseudo-QMF or generalize
QMEF banks, and they did not achieve perfect re-
construction. Instead, they only cancel aliasing
between adjacent frequency subbands, and they
introduce a small amount of amplitude distortion
into the reconstructed output. Figure 6 shows the
analysis filters of an 8-band pseudo QMF bank.
Note that only the transition bands of adjacent
filters overlap-- the passbands and transition
bands of all non-adjacent filters are in the stop-
band. Thus, it really is sufficient just to cancel
aliasing between adjacent bands. Figure 7 shows
the frequency response of the combined analy-
sis/synthesis system. While there is some ampli-
tude distortion, its magnitude is extremely small.
Thus, despite its minor flaws, the pseudo-QMF
bank has been widely used in a variety of appli-
cations, most notably MPEG (motion picture ex-
perts group) audio Layers 1, 2, and, 3 (MP3).
More recently, various authors have found ways
of designing the prototype filter H(z) so that per-
fect reconstruction can also be achieved within
the framework of Fig. 5 [12].

— * 2 — low-low band

Hp (o * 2 — low-high band

— Hv —»*2

— * 2 — high-low band

Hp, 1§ 2 |— high-high band

Figure 9: 4-band 2D multirate filter bank-- one level of wavelet decomposi-

tion.
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It should also be noted that the cosine modu-
lated filter bank of Fig. 5 can be specialized to
the lapped orthogonal transform (LOT) or Local
Cosine Transform (LCT). To see this, consider
Fig. 8. Here, the polyphase subfilters have been
replaced by single scalar coefficients. These co-
efficients are simply the window weights required
to implement a LOT having a 50% overlap be-
tween adjacent windows. In the figure, the poly-
phase network acts exactly like a shift register in
which half of the samples are replaced with new
samples every clocking cycle.

4. Applications
4.1 Wavelet-Based Image Compression

The current standards for image and video
compression, JPEG (joint photographics experts
group) and MPEG, are both transform coders
centered around an 8x8 blocked DCT ([1], [2].
More recently, image compression algorithms
based on the wavelet transform have gained
prominence in both research and development
because of their ability to operate effectively over
a wide range of compression ratios [13]. [14]. In
fact, a single wavelet-based algorithm can be con-
structed which operates efficiently for both
lossless and highly lossy compression [15], [16].
The basic 2-dimensional (2D) wavelet transform
used for image compression is constructed by
cascading two 1D filter banks of the type shown
in Fig. 4 so that the first one operates in the verti-
cal direction and the second in the horizontal di-
rection. The 4-band 2D filter bank thus created
is shown in Fig. 9 where the subscripts denote the
direction of operation of the low (L) and high
(H) pass filters. To create a complete wavelet
transform, we iterate the filter bank shown in Fig.
9, successively decomposing the low-low band.
Figure 10 shows the subband or wavelet coeffi-
cient mapping which results from 3 such itera-
tions. To further illustrate this point, Figure 11
shows the wavelet decomposition of an actual im-
age.

The process of wavelet-based compression is
illustrated in generic terms by Fig. 12. First the
image is transformed and then the transform co-
efficients are appropriately quantized (eliminat-
ing information content) and coded (eliminating
redundancy and converting into bits). To recon-
struct an approximation of the image, we decode
the bit stream and perform an inverse wavelet
transform (IDWT) which is simply the synthesis
filter bank corresponding to the analysis bank of
Fig. 9.

Of particular interest is a class of wavelet-based
image compression algorithms called ‘embed-
ded’ coders [13]-[16]. In an embedded coder, a
bit stream is generated and transmitted in order of
importance-- i.e., the most important bits are sent
first. Figure 13 illustrates this concept. Embed-
ded bit streams are useful in a number of ways:
1) if transmission terminates prematurely, we can
still reconstruct an image of the best possible
quality with the bits we received, 2) unequal error
protection coding is easily achieved in a dynamic
fashion, and 3) communications channels with
fixed bit rates are easily supported. All of these
traits are useful in military applications because
the communications channels of interest are pri-
marily RF and are likely to be operated in an un-
stable and noisy environment.

freq —
= (Ll LHy)
S fafm]
* 2| b LHO
HL, | HH,
HL, HH,
Figure 10: Wavelet coefficient or subband

mapping.

Figure 11: Wavelet decomposed image.



While a number of embedded coding algo-
rithms have been developed [13]-[15], we de-
scribe here the embedded zerotree wavelet (EZW)
approach which was the first developed and is still
one of the best [13]. The fundamental observa-
tion around which this coding algorithm is cen-
tered is that there is a strong correlation between
insignificant coefficients at the same spatial loca-
tions in different wavelet scales-- i.e., if a wavelet
coefficient at a coarser scale is zero, then it is
more likely that the corresponding wavelet coeffi-
cients at finer scales will also be zero. Figure 14
shows a 3-level, 2D wavelet decomposition and
the links which define a single zerotree structure.
If the wavelet coefficient at a given scale is zero
along with all of its descendants (as shown in Fig.
14), then a special symbol indicating a zerotree
root (ZTR) is transmitted, eliminating the need to
transmit the values of the descendants. Thus, the
correlation of insignificance across scales results
in a net decrease in the number of bits transmit-
ted.

13.1 Kbyt

5242 bytes

TRANSMITTER

Image—- %gr\llg?gg:et Quantize Code —»bits
(2)
. Reconstructed
bits —s={ Decode IDWT  |—» Image
(b)
Figure 12: Wavelet compression and decom-
pression.
D!
B

Ry

Figure 14: Parent-child relationships amongst zerotree
coefficients.

655 bytes

RECEIVER

Bits Received

Figure 13: Embedded image compression.
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Figure 15: Encoder and decoder for an embedded image compression algorithm.

the subordinate list in the exact same way as they
were created by the encoder. Because of this pre-
cise synchronization, the resolution enhancement
bits transmitted during the subordinate pass do
not need any location specifiers-- the decoder
knows the exact transmission order of these bits
because it has reconstructed the same subordinate
list as the encoder had at that point in the process.
The encoding and decoding processes described
here are illustrated by the block diagrams shown
in Fig. 15. Figure 16 illustrates the advantages of
wavelet-based compression over JPEG at high
compression ratios.

In order to generate an embedded code (where
information is transmitted in order of impor-
tance), Shapiro’s EZW algorithm scans the wave-
let coefficients in a bit-plane fashion. Starting
with a threshold determined from the magnitude
of the largest coefficient, the algorithm sweeps
through the coefficients, transmitting the sign (+
or —) if a coefficient’s magnitude is greater than
the threshold (i.e., it is significant), a ZTR if it is
less than the threshold but the root of a zerotree
at the coarsest possible scale, or a 0 otherwise--
this is the dominant pass. Next, for the subordi-
nate pass all coefficients deemed significant in the
dominant pass are added to a second subordinate
list which is itself scanned, adding one bit of
resolution to the decoder’s representation of each
significant coefficient. ~Symbols generated by
these two passes are then passed through a lossless
arithmetic coder to extract further statistical re-
dundancy. After this, the threshold is halved and
the two passes are repeated with those coefficients
having been found significant previously being
replaced by zeros in the dominant pass (so that
they do not inhibit the formation of zerotrees in
subsequent iterations). The process continues
until the bit budget is exhausted; at this point, the
encoder transmits a stop symbol and its operation
is terminated.

The decoder, on the other hand, simply accepts
the bit stream coming from the encoder, pro-
gressively building up the significance map and
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Figure 16: JPEG versus EZW at a compression ratio of 51:1. Objective comparis.on metric is peak signal to
noise ratio (PSNR).

@ ®)
Figure 17: (a) Reconstruction of image compressed by 160:1 ratio. Again, squares have been added to highlight en-
hanced regions. (b) Error residual between reconstructed and original images where white areas in residual denote large
erTors.

4.9

Figure 18: (a) Compressed with space-frequency weighting by 32:1 ratio; (b) Compressed without weighting. Note
that our texture detection algorithm is designed to be selective-- it only identified the orchard in the upper left-hand cor-

ner of the image but not the one in the lower right-hand corner.
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Figure 19: Generic audio encoder.

One should note that the use of wavelet trans-
forms for image (or video) compression does not
preclude spatial significance weighting. In other
words, if you know that certain regions of the im-
age contain more (or less) important content, you
can have the encoder allocate more (or less)
resolution to those areas. In fact, within the
framework of the wavelet-decomposed image, the
encoder can actually control the allocation of
resolution in both space and frequency-- within
certain constraints, of course. In [17] we com-
bined an embedded image compression algo-
rithm with a maximum average correlation height
(MACH) feature detector to allocate resolution
within the image frame. Figure 17 shows the re-
sult of this feature-based compression algorithm
when four different resolution weightings are
available. Similarly, we can also decrease the
resolution of areas that our coder determines to
be of low interest (in order to make more bits
available for the rest of the image). In Fig. 18, we
have forced the encoder to discard higher fre-
quency wavelet coefficients within the orchard on
the assumption that the details of the orchard are
not of great interest. Although not obvious in the
figure, the areas outside the orchard are repre-
sented with higher fidelity in Fig. 18b than 18a.

4.2 Wideband Audio

Another area in which multirate filter banks
have had great success is wideband audio com-
pression. Because of the high dynamic range of
typical wideband audio signals (e.g., classical mu-
sic), a highly adaptive decomposition and bit al-
location framework (dynamically adapted to the
signal power levels at a given time and within a
given frequency band) is required. The basic
time-frequency decomposition used in virtually
every wideband audio coder generated is the co-
sine modulated filter bank in either the general
polyphase form of Fig. 5 or the LOT form of
Fig. 6. To allocate bits to the different frequency
bands at a given time, the algorithm uses knowl-
edge about perceptual masking in the human ear
[18].

Figure 19 shows the block diagram of a ge-
neric subband (transform) coding algorithm
which can adapt its quantization (and possibly its
decomposition) to optimize the perceived quality

“and backward masking.

of its reconstructed audio. The dotted lines rep-
resent data exchanges which do not occur in all
implementations. For example, all three of the
MPEG 1 audio coders (Layers 1, 2, and 3) use a
separate FFT to perform the frequency analysis
required to do the bit allocation (indicating that
path al is active) while Dolby AC-3, Philip’s
digital compact cassette (DCC), and Sony’s
MiniDisc use only the outputs of their signal
decompositions (path a2). The ‘Perceptual
Analysis’ block computes the masking estimates
which are required by the ‘Bit Allocation’ block
to ensure that quantization errors in the recon-
structed audio are inaudible. Based on this analy-
sis of the signal, some audio coders also have the
ability to alter their decompositions and the cor-
responding coefficient groupings (path b) to pre-
vent the introduction of pre-echoes into the de-
coded audio. Note that the decoder simply in-
verts the operations of the encoder block by
block to reconstruct an approximation of the in-
put audio.

Perceptually transparent coding is accom-
plished primarily by exploiting the various
masking properties of the human ear, specifically:
the absolute threshold of hearing, simultaneous
frequency masking, forward (temporal) masking,
First, any frequency
component of the signal whose power falls below
the absolute threshold of human hearing need not
be transmitted. This threshold is lowest between 2
and 4 kHz and goes up rapidly above 15 kHz.
Next, if a small amplitude tonal signal occurs at
the same time as a larger one of similar fre-
quency, the smaller signal will be masked. This is
called simultaneous masking and is specified in
terms of critical bands which are defined on the
bark scale [18]. These critical bands define the
frequency resolution of the human auditory sys-
tem-- from O to 500 Hz there are 5 uniform criti-
cal bands while above 500 Hz the width of each
band expands by approximately 1/3 per octave.
The effectiveness of the masking decreases by
about 8 dB/ bark for critical bands above the
masker and 25 dB/bark for those below it, and it
also depends strongly on the tonality of the input
since pure tones mask each other much more ef-
fectively than noise-like signals. To estimate to-
nality, the Spectral Flatness Measure (SFM)-- ba-
sically the logarithm of the power spectrum’s
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geometric mean divided by its arithmetic mean--
is generally employed [19]. Specifically, a ratio
of the current SFM to the SFM of a maximally
tonal input is used to compute the tonality of the
current block of samples, and this tonality coeffi-
cient biases the masking threshold upward for
highly tonal signals or downward for noise-like
signals.

The final perceptual effects which must be
considered in the design of the coding algorithm
are forward and backward temporal masking.
Forward masking occurs when the masking signal
ends before the masked signal begins while
backward masking is the exact opposite. Per-
ceptual studies have shown that forward masking
is the more effective of the two by a wide margin
[18]. While most of the currently available cod-
ing algorithms claim to ‘exploit’ forward and
backward masking, this statement is somewhat
misleading. Explicitly, they exploit simultaneous
masking to achieve bit rate reductions through
adaptive bit allocation while implicitly exploiting
forward masking to conceal the effects of time-
frequency blocking on the quantized coefficients.
In other words, if the masking signal contained
within the block of coefficients ends prematurely,
the quantization noise will still be concealed. The
situation with backward masking, however, is en-
tirely different since this phenomenon is highly
localized around the leading edge of the masker.
If blocks of coefficients representing a fixed
time-frequency subdivision of the signal are
jointly coded, then it is possible for pre-echo to
be introduced into the reconstructed audio by the
occurrence of a large masker in latter parts of a
block. Thus, the goal of the coding algorithm is
not so much to exploit backward masking as to
compensate for its limitations. In fact, the entire
motivation for using temporally adaptive trans-
formations in the encoder (path b in Fig. 19)
comes from the need for increased time localiza-
tion of the quantization errors during sharp at-
tacks (i.e., sudden increases in the short time
power spectrum of the audio input).

Fo(2) —\

XM-1(”)—>1 M

4.3 Time-Frequency Interference Excision

The same transforms we applied in the last
section to the rather non-military application of
wideband audio compression can also be applied
to the problem of removing narrow band inter-
ference from a wideband signal [20]. To do this,
we first transform the signal using the LOT of
Fig. 6 and then analyze the frequency subband,
looking for any large concentrations of energy.
Since our desired signal is wideband, its energy
will not be particularly concentrated in any given
band. The energy from a narrowband interfer-
ence, on the other hand, will be concentrated into
certain bands, even if its frequency is hopping or
chirping (within certain bounds). Once a band
containing a potential interference source is de-
tected, we alter its transform coefficients so as to
suppress the interference without introducing new
types of distortions into the signal. Note that this
is more complicated than simply zeroing the of-
fending coefficients since these zeros themselves
can introduce false information into the output
signal. Finally, the transform coefficients-- pos-
sibly modified-- are inverted, and the denoised
signal is then sent on for detection or further
processing. A block diagram of the complete
system is shown in Fig. 20.

Superimposed on the excision system in Fig.
20 is an example illustrating the advantages of
excision. The input spread spectrum signal enters
from the left and is corrupted by noise and nar-
rowband interference (effects of the communica-
tions channel). The upper branch outputting the
signal to the right simply correlates the corrupted
signal with the original without denoising. Note
that the correlation peak is totally obscured by
noise. The signal coming out of the lower corre-
lator, on the other hand, has had its interference
detected and removed using time-frequency
methods [21]. Here, the correlation peak at the
output is highly pronounced, indicting that we
can easily decode the information bits modulated
onto this waveform.

One can also use a windowed Fourier trans-
form in this application. The disadvantage of
doing this, however, is summarized by the Balian-

Ho (@) = M |- yo(n)

H1 (2) M = yi(n)

i (2) =y M 2=y 1(n)

Figure 21: COFDM transmission system.



Low Theorem: it is impossible to design a win-
dowed Fourier transform which simultaneously
achieves good time and frequency localization
but does not expand the sampling rate of the sig-
nal in the transform domain. Thus, to prevent the
excision process from introducing artifacts into
the reconstructed signal, one must generate and
process approximately 50% more transform do-
main coefficients using a Fourier transform than
with the lapped orthogonal cosine transform.

4.4 Code Orthogonal Frequency Division
Multiplexing (COFDM)

The basic idea of COFDM is to combine a
large number of low bandwidth information
sources into a single wide bandwidth signal for
transmission [6]. This can be accomplished using
the dual structure to the PR filter bank-- the per-
fect transmultiplex. Such a system is shown in
Fig. 21 where M narrow bandwidth signals are
combined into one signal having M-times more
bandwidth. Note that while each of the M input
signals is mostly confined to a specific frequency
band within the combined signal, there is some
overlap because the digital filter are not ideal.
Despite this, if the filters F,(z) and H(z) are de-
signed correctly, all cross-talk will be cancelled
and no amplitude or phase distortion will be in-
troduced into the output signals: i.e., y,(n) = x,(n)
for all k. It is easily shown that if filters F(z) are
the synthesis filters for an M-band PR filter bank
and H,(z) are the corresponding analysis filters,
then the outputs of Fig. 21 will exactly equal its
inputs, resulting in a perfect transmultiplexer.

If the impulse responses of the set of filters
{f(n)} are all mutually orthogonal to each other,
then the system illustrated by Fig. 21 is truly
COFDM. Note that orthogonality of the synthesis
filter set {f(n)} also guarantees orthogonality of
the analysis filter set {h(n)}. If a PR cosine
modulated filter bank of the type shown in Fig. 5
is used here, then the filter set {f,(n)} is indeed
orthogonal. Higher order filters results in better
frequency confinement of the original signal
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x,(n) within the composite signal, but they also
increase the complexity of the system. To make
M as large as possible for a given implementation
complexity, the LOT of Fig. 6 is often used. This
results in relatively poor frequency localization of
a given narrowband input within the broadband
composite signal but does not appear to cause
any serious problems within the context of this
application.

Europe has already selected this modulation
scheme for Digital radio broadcasting and will
likely select it for digital television as well. Why?
A major advantage is that it is much more robust
to multipath phenomena and other forms of fre-
quency dependent interference. Specifically, one
can adjust the information flow rate going into
each of the M input channels so that every chan-
nel operates at exactly its maximum capacity.
Thus, a channel that is subject to a great deal of
interference would have much less data capacity
than one which is not. The data rate for each
channel can be adjusted by altering the amount
of error correction used in it-- i.e., the low rate,
interference prone channel expends most of its
raw capacity on error protection while the high
rate, interference free channel uses more of its
capacity to transmit actual data bits. In some
cases, there might also be a feedback path from
the receiver to the transmitter, allowing the system
to adapt to the changing RF environment. Note
that numerous variations on this concept have
been proposed including wavelet modulation and
discrete tone modulations. Both of these use the
same basic concept as COFDM, but with different
modulation kernels [22].

4.5 Time-Frequency Scrambling

It has been shown in [5] how multirate filter
banks can be used very effectively to implement
voice scrambling systems based on time-
frequency permutation. The most general form
of such a system is shown in Fig. 22 where P(z) is
the permuter (it is a function of z because it has,
in general, memory). Since the subband coeffi-
cients are only reordered by P(z) and not, in the-
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Figure 22: Time-frequency scrambling.
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ory, quantized, any perfect reconstruction filter
bank can be used for the analysis and synthesis
operations in Fig. 22 without loss in the quality of
the reconstructed signal. If the signal input to the
encoder, x(n), has a frequency distribution which
is known to the pirate (e.g., mostly lowpass), then
the pirate will be able to use this knowledge to
more easily break the permuter’s scrambling al-
gorithm. This liability can be eliminated at con-
siderably higher cost by passing the permuted
signal from P(z) through the synthesis bank and
transmitting the output. In this case, the decoder
must first pass its received signal through an
analysis bank, process it with the inverse per-

muter, P(z)—l, and, finally, reconstruct the un-
scrambled signal. If the filter banks used in the
process are perfect reconstruction, the unscram-
bled signal will still match the original at the end
of this process (barring multiplication roundoff
and coefficient quantization errors).

Time-frequency scrambling using maximally
decimated multirate filter banks has a number of
advantageous properties. Obviously, it obscures
the signal in both time and frequency, making it
very difficult to decode it even if your opponent
has a priori knowledge about the statistics of the
signal (at least as long as the filters and synchro-
nization intervals are not know exactly). Fur-
thermore, since the filter bank is maximally
decimated, the scrambler does not increase the bit
rate of the signal. On the minus side, the delay
introduced by the permuter P(z) for any given
sample must be limited to some maximum value
for real-time applications. With 2-way voice
communications, for example, it becomes impos-
sible to carry on a conversation if the throughput
delay or latency grows too large. If little system
latency is allowed, the delay constraint on P(z)
permits an opponent to limit his key search and
thus decode- the data more quickly. Time-
frequency scrambling systems are most useful for
protecting data whose importance is highly time
dependent-- i.e., data which is immediately useful
but has little long term value. For other kinds of
sensitive data,, such time-frequency systems
probably do not provide adequate protection.

5. Conclusions

We have discussed some of the basic concepts
behind digital multirate systems, focusing on the
area of maximally decimated filter banks and
wavelets. In particular, we have analyzed the 2-
band PR filter bank which implements orthogonal
and biorthogonal wavelets. We have also consid-
ered the important cosine modulated filter bank, a
special case of which is the lapped orthogonal
transform or local cosine transform. Finally, we
have summarized a number of communications-
related applications for such filter banks includ-
ing wavelet-based image compression, wideband
audio compression, noise excision, modulation,

and scrambling. Of course, many other applica-
tions for such multirate systems also exist in-
cluding adaptive filtering, pattern recognition,
and channel equalization. In short, multirate
digital signal processing plays an important role
in modern communications systems, and it will
likely become even more critical as digital con-
nectivity increases in the future.
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Summary: In most of the requirements met in
situation assessment, multisensor analysis has to be
able to recognize in adverse conditions one situation out
of a set of possibilities concerning for instance either
localization, identity, or matching hypotheses. To do
so, it uses measurements of more or less doubtful origin
and prior knowledge that is understood to be often
poorly defined, and whose validity is moreover difficult
to evaluate under real observation conditions. The
present synthesis proposes a generic modeling of this
type of information in the framework of the theory of
evidence, with closer attention being paid to the
different natures of data processed in common cases.
This modeling in then used to elaborate processing
methods able to face specific problems that may arise
when multisensor systems are implemented to achieve
functions like detection, classification, matching of
ambiguous observations, or tracking. Crucial practical
problems are more specifically dealt with, such as
appropriate combination processing and decision
making, management of heterogeneous frames of
discernment, and integration of contextual knowledge.
Furthermore, the interest of a global functional approach
at low level, possible in that framework, is emphasized.

1 Data Uncertainty in Multisensor Systems

Sensors are mainly associated in order to get benefit of
their complementarity. Different kinds of advantages may
be expected :

- ability to face a more important set of situations, as
one sensor may be efficient while an other one is not
because of particular counter-measures, physical
phenomena, conditions of observation, or lack of suitable
knowledge (learning,...);

- saving of time thanks to task sharing and cooperation
between specific functions ;

- discrimination capacity improvement as a result of
observation conjunction when only partial information is
locally available (classification, 1ocalization,...).

Consequently, when analyzing a situation, the available
sensors are most often used under conditions that induce
uncertainties at different levels :

- measurements may be imprecise,
incomplete, or ill-suited to the problem,

€rroneous,

- observations may be ambiguous, either in space or in
time (e.g. position, velocity, or feature measurements
provided by two different sensors are not necessarily
related to a same object),

- prior knowledge (generated by learning, models,
descriptions, and so forth) may be incomplete, poorly
defined, and especially more or less representative of
reality, in particular in light of the varying context.

Moreover, the disparity of the data delivered by the
various sensors, which is intended to remedy the
individual insufficiencies of each, requires a detailed
evaluation of each of them, based on any exogenous
information that might characterize their pertinence to the
problem at hand and the context investigated, while such
information is itself often very subjective and imprecise.

Theories of uncertainty offer an attractive federative
framework in this context. But they run up against a
certain number of difficulties in practice : interpretation
and modeling of the available information in appropriate
theoretical frameworks, choice of an association
architecture and combination rules, decision principles to
be adopted, constraints concerning the speed and volume
of the necessary computations.

To provide solutions to these questions, we will first
consider a generic problem in which we attempt to
characterize the likelilhood of [ hypotheses H;

theoretically listed in an exhaustive and exclusive set E.
These hypotheses may typically concern the presence of
entities, target or navigation landmark identities, vector
or target localization, or the status of a system or of a
situation.

Such a likelihood function may then be integrated either
into :

- a choice strategy, to declare the most likely
hypothesis (target identification, intelligence, and so on),

- a filtering process (such as target tracking or navigation
updating),

- a decision aid process for implementing means of
analysis, electronic warfare, or intervention.

Paper presented at the RTO SCI Lecture Series on “Application of Mathematical Signal Processing Techniques
to Mission Systems”, held in Koln, Germany, 1-2 November 1999; Paris, France, 4-5 November 1999;
Monterey, USA, 9-10 November 1999, and published in RTO EN-7.
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The likelihood functions we want have to be developed
from the data provided by J sensors Sj. Each of them is

assumed to be associated with processes that extract a
measurement or a set of measurements Sj, pertinent to

the targeted discrimination function, from the raw signals
or images it generates.

The developments presented are conducted in the theory
of evidence framework [1], which provides the broadest
and best-suited tools for the interpretation and the
processing of the data considered. It is also the most
federative in terms of synergy between the different
theoretical frameworks that may be involved together.
Appendix A gives a few basic notions that will be used
in the following.

We first propose a common solution to the generic
modeling problem introduced formerly, that is afterwards
particularized when closer attention is paid to the
different natures of data processed in common cases. This
modeling in then used to elaborate suitable classification
methods, thanks to appropriate combination processing
and decision making. Furthermore, specific problems
met in multisensor systems are considered, such as
management of heterogeneous frames of discernment,
integration of contextual knowledge, and matching of
ambiguous observations. Finally, the interest of a global
functional approach at low level, possible in that
framework, is emphasized with the implementation a
tracking process that manages directly discrimination
features.

2 Modeling of Input Data
2.1 Generic Model

In the framework of the generic problem we will be
considering first, we assume that each measurement s;

can be used to generate / criteria Cjj, on the basis of any
a priori knowledge, having values in [0,1] capable of
characterizing the likelihood of each hypothesis H;. A
quality factor g;; with values in [0,1] is also associated
with each likelihood Cjj. Its purpose is to express the
aptitude of the criterion Cj to discriminate the
hypothesis H; under the given observation conditions,

on the basis of a dedicated learning process or exogenous
knowledge. This factor includes mainly the confidence
that can be accorded to the validity of the a priori
knowledge used for generating Cjj. As concerns, for
example, the representativity of a learning process in a
varying context, it will typically depend on the quality,
volume, and suitability of the available preliminary data
as regards the situation effectively met.

Furthermore, we consider here the practical case of
interest when the criteria Cj; are generated by separate

information channels, in agreement with the fact that
they are characterized by different levels of reliability g;;.

We also assume that we are in the most frequently

encountered context where the criteria C,-j taken

separately are always at least of refutation value, in the
sense that, when zero, this guarantees that the associated
hypothesis Hj; is not verified.

This leads to a formal construction of the problem on the
basis of two axioms [2], [3] :

Axiom I : Each of the I*J pairs [Cjj,gj;] constitutes a

distinct source of information having the focal elements
Hi, ~Hj, and E, in which the frame of discernment E

represents the set of the / hypotheses ;.

Axiom 2 : When Cj; = 0, Cjj being valid (g;; = 1), we
can assert that H; is not verified.

Axiom 1 requires that /*J mass functions m;(.) be
generated from the /*J respective pairs [Cjj,qj7]. For
each, the mass of focal elements H;, ~H}, and E is at first
defined by the value of the corresponding criterion Cjj,

which can be interpreted only in terms of credibility or
plausibility of H;. Axiom 2 then limits the number of

allowable interpretations to two. The first interpretation
leads to :

Crij(H) =0 and  Plj(Hp) = Cjj 2.0
and the second to :

erj(Hj) = Plij(Hi) = Cij 2.2)

Then, including the confidence factor g;; for Cj; by
discounting at the rate (1-g;;) provides the desired mass
function m;(.). This leads to the two possible models :

Model 1 :

mji(H;) =0 2.3)
mji(—~H}) = qi*(1-Cij) (24)
mi{E) = 1-q;*(1-C}j) (2.5)
Model 2 :

mij(H,') =q;i*Cjj (2.6)
mij(—H;) = qij*(1-Cjj) 2.7
mii(E) = 1-qjj (2.8)

A mass function m(.) synthesizing all the evaluations is
then obtained by computing the orthogonal sum of the
different mass functions m;j;(.) in the framework of each

model :

m() =€ mj() (2.9)
iy
It should be noted that Model 1 is consonant.

Furthermore it satisfies the minimum of specificity
measure [4].



The practical determination of the Cj; and gjj terms is of
course a problem specific to the type of application at
hand. The following in this section 2 provides
expressions of Cj; for the different natures of data

processed in common situations. The determination of
qjj is discussed in sections 3 and 5.

2.2 Model With Statistical Learning

We have to consider different kinds of relation between
the sensor observations and the discrimination features
that are characterized by previous learning.

2.2.1 Precise and Reliable Observation

The problem dealt with here assumes that each of the
measurements s; is directly one of the discrimination
features exploited or a deterministic function of it, so that
for each of them a learning of their a priori probability
distribution p(sj/H;), under the various hypotheses Hj, is
available. Most systems do in fact allow a certain
number of preliminary measurements in different real or
simulated situations, from which histograms can be
generated to get a numerical or analytical model of the
distributions p(sj/H;). The I*J values of probability
density p(sj/H}) associated respectively with the J local
measurements s; constitute the inputs for the processes

discussed hereafter.

If we consider the most common case, where the
measurements s; can be assumed to be statistically
independent, since the sensors are generally chosen for
the complementary nature of the data they generate, the
likelihood of each hypothesis H; can be established
immediately by the Bayesian approach, which typically
calls for an evaluation of the a posteriori probability
P(Hjls1,...,5)) of each hypothesis H; using :

P(H/s1,...sp=
{(I1 p(si/HI*P(HD} / X AL p(sifH1*P(HR}Y - (2.10)
J k Jj

in which P(H;) designates its a priori probability.

However, this kind of approach quickly runs into
difficulty when the real observation conditions differ from
the available learning conditions, or when the
measurement bank is not sufficient for a suitable learning
process. The lack of control that can be seen at this level
in most applications leads to distribution models that
turn out to be more or less representative of the data
actually encountered. In addition, it is often difficult to
find a set of a priori probabilities P(H;) capable of

reflecting the real situation with fidelity.

So we want to find a modeling based solely on the
knowledge of p(sj/H;) and capable of integrating any

information concerning the reliability of the various
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distributions, whether this comes from a more or less
partial knowledge of the observations conditions or from
a qualification of a data bank.

According to the generic approach introduced in section
2.1, any available qualitative information is assumed to
be synthesized in the form of /*J coefficients g;;€ [0,1],

each being representative of a degree of confidence in the
knowledge of each of the /*J distributions p(s;j/H;).

Dealing with this problem in the terms of evidence
theory requires finding, for each source Sj, a model of its

I a priori probabilities p(sj/H;) and their / respective
confidence factors gjj in the form of a mass function
mj(.), characterized by a credibility function Crj(.), and
by a plausibility function P/i(.). Since the sources S; are

distinct, a global evaluation m(.) can then be obtained by
computation of the orthogonal sum of the mj(.). The

appropriate frame of discenment is of course the set of
the 7 a priori listed hypotheses Hj.

To do this, we propose to conduct an exhaustive and
exact search of all the models that might satisfy three
fundamental axioms [2], [5]. These three axioms are
chosen beforehand on the basis of their legitimacy in
most of the applications concerned. They are :

Axiom 3 : Consistency with the Bayesian approach in
the case where the learned distributions p(s;/H;) are

perfectly representative of the densities actually
encountered (gj=1, Vij) and where the a priori

probabilities P(H;) are known.

Axiom 4 : Separability of the evaluation of the
hypotheses H;; that is, each probability must be

considered as a distinct source of information generating
a particular mass function mj;(.), mainly capable of

integrating the confidence factor gj; specific to it. We
thus require that each mass function mj() be the
orthogonal sum of the / mass functions m ,'j(.) considered
for ie[1,/]. Also, considering the way the p(sj/H})
probabilities are generated, the focal elements of the mass
function mj;(.) can be only Hj, —Hj, or E, where the
frame of discernment E is the set of hypotheses H;.

Axiom 5 : Consistency with the probabilistic association
of the sources ; for independent sources Sj and densities
p(sj/Hj) perfectly representative of reality, the modeling

procedures retained must lead to the same result if we
compute the orthogonal sum of the 7;(.) modeled from

the p(si/H;) or if we model directly the joint
probabilities p(sy,...,s /H;) given by :

(515,57 H) = I p(sj/H)) (2.11)

J

The search for models satisfying these three axioms is
presented in appendix B by progressively restricting the
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set of possible models, taking the axioms into account
in the order stated.

It appears that only two models satisfy the three desired
axioms. Both meet the decomposition :

mi(y= B m() (2.12)
i

Model 1 is particularized by :

mjj(Hp) =0 (2.13)
mij(~H}) = g (1-Ry*plsjIH)) 2.14)
mi(E) = 1-qjj+qi*Ri*p(sj/Hj) 2.15)
and Model 2 by :

mi(H}) = qi* Rj*p(sjl H) {1+R;*p(sj/H) } (2.16)
mi(—H}) = qjj/ {1+R;*p(sj/H})} 2.17)
mjj(E) = 1-qj; (2.18)

In both cases, the normalization factor R; is simply
constrained by :

Rj e [0, (max{p(sj/H;)})"1]
sj',i

(2.19)

Nevertheless, the specificity of the function used to
generate model 2 allows R; to be simply a positive
number for this model in practice.

We may verify that this result is in fact a special case of
the generic solution discussed in section 2.1. Both
models provided by (2.3) to (2.5) and (2.6) to (2.8) in
section 2.1 are strictly equivalent to the two models
found here in (2.13) to (2.15) and in (2.16) to (2.18), if
we adopt the following respective definitions for the Cj; :

Sor model 1 : Cjj = Rj*p(sj/H;) (2.20)

Jor model 2 : Cjj = Rj*p(sj'/H,')/[1+Rj*p($j/Hi)] 2.21)

in which R; is still, of course, the normalization gain
constrained by (2.19).

This outcome is in fact legitimate if we note that Axiom
1 is expressed directly by Axiom 4, and that the
solutions required by Axioms 3 and 5 automatically
verify Axiom 2. Axioms 3 and 5 simply make it
possible to specify the inclusion of the particular
information p(sj/H;) in the expression of the criterion

Cij~

Lastly, when the data s; are discrete values (local
identity declarations, for example), the generalized Bayes
theorem defined by P. SMETS in the framework of
evidence theory [6] can be applied, for the case of
statistical learning, to the cartesian product between the
set of data and the set of hypotheses. It then strictly
yields Model 1 developed here. Correlatively, we have

to note that the model I, once again, minimizes the
specificity measure criterion [4].

2.2.2 Uncertain Observation

We assume now that the measurements s; are uncertain
observations of discrimination features u;, so that only
their a priori probability distribution p(s;/u;) is known.
This may simply be the classical characterization of a

measurement error. Furthermore, for each of the
discrimination features uj themselves, a learning of their

a priori probability distribution p(uj/H;) under the
various hypotheses H; is as formerly available.
If we note that :

p(sj/Hy) = I plsjlujy*p(uj/Hy) du; (2.22)

then the results of section 2.2.1 can be directly extended
so that the generic solution provided in section 2.1
holds with :

for model 1: Cjj = R;* Ip(Sj/uj)*p(uj/Hi) duj  (2.23)

for model 2: Cjj = Rj*[ fp(Sj/uj)*p(uj/H,') du;j)/
D+R* [ p(sjlup)*pujlHj) duj] - (2.24)

where the normalization factor R; is now constrained by :

Rj e [0, (max{ | p(sjluj)*p(uj/H;) duj})-1]
s j,i

(2.25)

2.2.3 Imprecise Observation

In this case the measurements s5; are imprecise
observations of the discrimination features uj, so that
they only provide a fuzzy membership function f1(u;).
For each of the discrimination features #;, a learning of
their a priori probability distribution p(u;/H;) under the
various hypotheses H; remains available, as formerly.

We can here express :
pisifHp) = I Hi(uy)*p(uj/Hj) duj (2.26)

Once more the results of section 2.2.1 can be directly
extended, and the generic solution provided in section
2.1 holds with :

for model 1: Cjj = R;* f/.tj(uj)*p(uj/Hi) duj(2.27)

Jor model 2 : Cjj = R*[ ] 1 (uj)*p(ujl Hy) duj)/

[1+R* | piCupy*p(ujl Hy) du] - (2:28)

The normalization factor R; is now constrained by :



Rj e [0, (max{ | ui(u))*p(ujlHy) du})-1]
s j,i

(2.29)

2.3 Model With Approximate Prior Knowledge

Once again we have to consider the different kinds of
relation between the sensor observations and the
discrimination features, whereas the latter are now
characterized by approximate prior knowledge.

2.3.1 Precise and Reliable Observation

In this case each of the measurements s; is directly one of
the discrimination features exploited, or a deterministic
function of it. Nevertheless, the characterization of the
different hypotheses H; in the feature space is now
provided by prior knowledge in the form of fuzzy
membership functions f;(s;). This means that an
hypothesis H; represents for instance an object about
which we only know that it is large, slow, or heavy, as
regards respectively the size, speed, or weight space.

To elaborate a suitable model, we have first to consider,
for each hypothesis H;, a-cuts A gy of y;(s;) at different
decreasing levels og. As each a-cut defines a set that
includes the previous one, it leads to the following
consonant mass function on the measurement space :

m(A o/ Hi) = Ot - Otf+ 1 (2.30)
The Generalized Bayes Theorem defined by P. SMETS
in the framework of the evidence theory [6] may then be

implemented to obtain a mass function on E for each of
the measurements s; :

m(H,/sj) =0 (2.31)
m(—Hlsj) = 1-pi(sj) (2.32)
m(Els;) = pi(sj) (2.33)

This mass function is then discounted at the rate (1-¢;),
if qj; represents our degree of confidence in the prior
knowledge p(s)), to provide the model we are looking
for:

mji(Hj)=0 (2.34)
mij(~H)) = q;*[1-(s))] (2.35)
mii(E) = 1-qi7+qij* Ui(s)) (2.36)

Obviously this result can be expressed by the model 1
obtained for the generic problem in section 2.1, as soon
as Cjj is defined by :

Cij = Ki(s) 2.37)
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2.3.2 Uncertain Observation

We assume here that the measurements 5j are uncertain
observations of discrimination features u;, so that only
their a priori probability distribution p(sj/x;) is known.
Furthermore, for each of the discrimination features uj

themselves, a prior knowledge provides the fuzzy
membership function 1;(x) that characterizes the different

hypotheses Hj, as formerly.

On this basis, the possibility theory gives the
possibility of each hypothesis #; for each feature u; :

TI(Hi/uj) = pi(u)) (2.38)

as well as the possibility density of each feature u; for
each measurement s; :

H(uj/Sj) = Rj*p(sjluj) (2.39)
where Rj is a normalization factor such that :
R; = [max{p(s;/u)}]"1 (2.40)

Uj

As a possibility function is simply a consonant
plausibility function, on the one hand (2.38) can in fact
be deduced from (2.31), (2.32), and (2.33), reminding
that in the latter s; is directly the feature u;, and on the
other hand (2.39) can result from (2.12), (2.13), (2.14),
and (2.15), when information is considered reliable
(gi=1), if the set E of hypotheses becomes the infinite
set of the possible values taken by u; (note that such an
evaluation in a continuous framework is only possible
for the plausibility function, and thanks to the special
nature of the focal elements of mij(.) as defined by (2.13),
(2.14), and (2.15)). The normalization factor R; has
simply to be particularized by (2.40), in agreement with
(2.19), in order to satisfy the definition of a possibility
distribution.

Then, (2.38) and (2.39) allow to elaborate the
possibility of each hypothesis H; for each measurement

Sj thanks to :

TI(Hilsj) = sup{[KH},ujlsj)} (241)
uj

which can be developed as :

TI(Hi/sj) = sup{TT(H/uj) AT Kujls))} 2.42)

uj
where A stands for the conjunction operator, and finally :

[I(Hjlsj) = sup{min{u;(u),Ri*p(sjlu;)} } (2.43)

Uj



5-6

As a possibility function is but a particular plausibility
function, the corresponding mass function which
minimizes the specificity measure [4] can be expressed,
after discounting according to the confidence factor g; :

miji(Hj) =0 (2.44)
mj(—~H}) = q;*[1- sup{min{u(x),R;* p(sj/up)} }]

U (2.45)
mii(E) = 1-qjj+qij*sup{min{/;(u)),R;* p(s;j/u)} }

uj (2.46)

Once more, this result is obviously the model 1
provided for the generic problem in section 2.1, as soon
as Cjj is now defined by :

Cjj = sup{min{L;(u;),R;*p(sj/uj)}} (247)
ui
J

in which Rj is still given by (2.40).

2.3.3 Imprecise Observation

The measurements s; are now imprecise observations of
the discrimination features uj, s0 that they only provide
a fuzzy membership function f(u;). Nevertheless, for
each of the discrimination features uj themselves, the

prior knowledge still provides the fuzzy membership
function ;(u)) that characterizes the different hypotheses

Hj, as formerly.

The developments in these conditions are quite similar
to those shown in section 2.3.2. The only difference
concerns the expression of the possibility density of each
feature u; for each measurement s; that becomes :

Tujlsj) = piuj) (2.48)
Consequently, this leads once again to the model 1
provided for the generic problem in section 2.1, where
Cjj has now to be defined by :

Cij = sup{min {u;(u),1j(u)}} (2.49)
4

2.4 Summary of the Models Obtained

A complete set of models has been developed in the
previous sections, in the framework of the theory of
evidence, according to the different kinds of data that
have to be combined as regards measurements on the one
hand, and prior knowledge on the other hand. All these
models are particular cases of the two models provided
for the generic problem in section 2.1, thanks to suitable
expressions of Cjj. The definitions of Cjj for the different
possible situations are summarized in table 1 for
model 1 and in table 2 for model 2.

We may note that tables 1 and 2 furthermore provide
expressions of Cj; for a precise and reliable prior

knowledge, i.e. for a prior characterization of hypothesis
H; formalized by a deterministic value ujj of the feature
uj. In fact these expressions are simply provided either
by statistical learning when p(u;/H;)=&uj-ujj), or by
approximate prior knowledge when p;(u;;)=1 and
ui(uj/ui#uij)=0. Nevertheless we can verify the good

coherence at this level between the two approaches in the
common case of model 1.

Prior knowledge — ujj plulH;) Hi(uj)
Measurements
sj 1 if sj=u;j Rj*p(Sj/Hi) yi(sj')
0 if sj#u; Rj constrained by (2.19)
p(sjlu) Ri*p(sjfuij) | R* I psj/u)*plujiH) duj | sup{min{u;(u;), Rj*p(sjluj)}}
Rj constrained| R; constrained by (2.25) uj
by (2.19) Rj defined by (2.40)
Hi(u)) Hji(uif) R* | pjup)* pluj/Hy) duj sup{min{gi(u), Ui(u))}}
Rj constrained by (2.29) uj

Table 1. Expression of Cj; in generic model 1 for the different kinds of prior knowledge and measurement
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Prior knowledge — | uj; p(ujlH;j) ()
Measurements
5j 0.5 if s;=ujj Ri*p(si/ H)[1+R;*p(sj/H})] *)
0 if s7#u Rj 20
Psjluf) Ry*p(sjluip)/ [ 1+Rj*p(sjlujj)] Ri*[ Jp(sj'/uj)*p(uj/H,') du;)/ *)
Rj 20 [1+R;* I psjlu)*p(ui/Hj) duj]
Rj 20
Hi(uy) HyCuip) [+ ()] Ri*[ ] piup)*p(ujiHj) duj)y ™
[1+R* [ pjCup)*p(uyH,) duf]
R;j 20

(*) Not consistent

Table 2. Expression of Cj; in generic model 2 for the different kinds of prior knowledge and measurement

3 Target Classification

The target classification function consists in recognizing
the type of a target, or even identifying it, on the basis of
the different discriminating features s; delivered by the
sensors S; that observe it. So the question is to
designate the most likely hypothesis H;* in
E={H1,..., HJ} having regard to this information. Such
a decision, which is immediate when a probability can
be associated a posteriori with each hypothesis,
becomes quite delicate when the evaluations are
presented in terms of mass functions of the evidence
theory. The whole difficulty revolves around the non-
exclusivity of the evaluations, which raises the practical
problem of interpretation and relative inclusion of the
masses attached to those focal elements of cardinal 2 or
greater, in the designation of a unique singleton. This
problem, which is general to the evidence theory and
unavoidable in the present context, has, as of today, been
addressed only by more or less satisfactory intuitive
solutions.

So below, we propose three different approaches to the
problem of choosing the most likely hypothesis Hj*,

considering an arbitrary mass function m(.) on the frame
of discernment E={H1,..., HJ}, when no other a priori

basis for discriminating among the Hj is retained.

A synthesis of the resulting procedures provides a
decision law suited to the classification problem. When
applied to the modeled mass functions, this law supplies
classification methods of noteworthy interest.

3.1 Minimum of Inconsistency

This approach consists in defining 7/ certain mass
functions m;(.), each of them being respectively focused

on each of the [/ hypotheses H; of the frame of
discernment E (mj(H)=1). The inconsistency Kj,
provided by the orthogonal sum of the mass function
mi{.) and the available mass function m(.), reflects their

disagreement, and so represents the conflict between the
assessment m(.) and the fact that hypothesis H; is

actually true. According to this, we have to choose the
hypothesis H;* that ensures a minimal inconsistency Kj.

As K; can be written :
K;=1-PI(H)) » 3.1

in which PI() is the plausibility function associated with
m(.), we have to choose the hypothesis that provides a
maximal plausibility.

The interest in this inconsistency criterion is confirmed
by the idea of entropy that is connected with it [4].

3.2 « Bayesian » Approach

The idea here is to consider a given set of
« equiprobable » Bayesian masses m((.) on the frame of

discernment E (mg(H;)=1/I, Vie[l,]]). Endowing this
mass function mg(.) with a role similar to that of

equiprobable a priori probabilities in the Bayesian
inference, a mass function m.(.) can be determined by

orthogonal sum of the mass function mq(.) and the
available mass function m(.). m(.) is then a Bayesian
mass function defined by :

me(Hp) = PIH){Y PIHp}, ie[l]] 3.2)
ke [1,1]
me(A)=0, VYV AzH; , ie[l,]] 3.3)

in which PI(.) is the plausibility function associated with
m(.). By reference to the maximum a posteriori
probability, the decision procedure obviously consists in
retaining the hypothesis H;* that has the maximum

mass, and thus the maximum plausibility here again.

Conceptually, the principle of this approach consists in
substituting an equal confidence between the singletons
of the frame of discemment in place of the total a priori
uncertainty, so as to force the discrimination among
these elements alone.
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3.3 General Approach of the Decision Problem

Here we look for a solution with reference to a more
general decisional context summarized, for example, in
[7]. The purpose is to choose one of a number of
possible actions to take, aj, on the basis of the

evaluation provided by the mass set m(.) on the frame of
discernment E.

This choice can be made by maximizing a cost function
C(ap,) on the set of possible actions, knowing the weight

G(ay/By) assigned to each potential action ap when the
event B, a subset of E, occurs :

Clap = X {G(ap/Br)*m(Bp)} (34)
BjCE

The whole difficulty of using such a procedure in
practice, and hence its credibility, resides in the
evaluation of the weights G(ap/Bg), which is usually

very subjective. While we may in general consider that
the weights relative to the singletons H; of £ are given

by the system or user, those relative to the subsets Bg of

cardinal 2 or higher must, on the other hand, be
determined intuitively, possibly in accordance with a
preferred « attitude » [7].

Yet in our case, this subjective character can be greatly
attenuated by the one-to-one correspondence we have to
establish between the set of actions and the frame of
discernment E, as each action a, consists in declaring an

hypothesis H; to be true. So, if there are no specific
requirements, the weights are legitimately given by :

G(ai/Bp) =1
G(a;/Bp) =0

if HjeBg (3.5)
if HjeByg (3.6)

s0 as to conform with the associated idea of mass m(Bp)

as introduced by the evidence theory, ie. as an
evaluation of one of the elements of Bj, though we

cannot specify of which element of By it is.

Under these conditions, (3.4) also leads to the
designation of hypothesis H;* of maximum plausibility

as the most likely.

Furthermore, it can be pointed out that this approach is
coherent with the most consensual evaluation of the
expected loss, among those proposed for instance in [8].

3.4 Synthesis
The three approaches presented all converge to the same

decisional procedure, which consists in choosing the
most likely hypothesis H;* according to :

H* = arg[max {PI(H})}] 3.7
ie [1,1]

It should also be noted that this decision law is the one
that satisfies the constraint emphasized at the end of the
developments concerning axiom 3 in appendix B.

For all the models discussed in section 2, as the
hypotheses H; are singletons of the frame of discernment

E, the plausibility PI(H;) is proportional to the product
of the Plj;(H;) associated with the my;(.), according to j

and k. After normalization by the product of the
Plyi(~H) according to j and k, we come to designate

Hj* by the criterion :

Hi* = argmax{T1([m;j(Hi)y+tmii(E))/[mjj(~H;y+mj(E)]D}]
i (3.8)
This criterion can directly be applied to the two models

provided for the generic problem, leading to the two
respective solutions :

Solution 1 :

Hi* = arg[m?}x{ml-qy'*(l-cij)]}] (3-9)
g

Solution 2 :

Hi* = arg[mt}x{n([l-qij'*(l-Cij)]/[l-qz'j*Cij])}] (3.10)
o

It should be noted that solution 1 also meets a maximum
credibility criterion.

The simplicity of the calculations and ease of use of
these solutions is worth noting.

Furthermore, if we want to integrate a relative a priori
confidence A;e[0,1] respectively in the declaration of

each of the different hypotheses Hj, or accordingly an
expected risk (1-4,) attached to it, we may formalize this

knowledge as a supplementary source of information.
The plausibility function Pl/g(.) of such a subjective

source has simply to be defined on E for the singletons
Hj, the only information we need in the following,

thanks to direct interpretation of the A; :

Plp(Hp = A; (3.11)

Therefore, the criterion of maximum plausibility (3.7)
becomes, once the orthogonal sum between PI/()) and
Plp(.) is computed for the singletons H; :
Hj* = arglmax {4;*PI(H)}]

ie[1,1]

and consequently (3.9) and (3.10) become :

(3.12)



Solution 1 :

Hi* = arg[max {A;*[1[1-g;*(1-C;)]}] (3.13)
i J

Solution 2 :

Hy* = arglmax {A;*TI([1-q;7*(1-Ci)V[1-q;7*CyiD}]
i J (3.14)

Of course, in (3.9), (3.10), (3.13), and (3.14), C,'j stands

for any of the suitable expressions developed in
section 2, according to the nature of the available data.

Recognition rate
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3.5 Illustration

Figure 1 shows the mean probability of good recognition
provided by the simulation of 2 sensors for a problem of
discrimination between 2 hypotheses H1 and H7. In this
very simple example both sensors are similar, as regards
either their a priori good discrimination capability, or
the unreliability of their learning concerning hypothesis
H», in relation with an anticipated possible evolution of

the context.

T /—/
P
0,9 1
0.8 1 =1
0,7 t
Sensor 1
0,6 T / Sensor 2
0,5
S
0,4 : % ; . : :
-2 -1 0 1 3 4 5 6

Figure 1. Classification with unreliable learning

More precisely, we are in the situation developed in
section 2.2.1, and available learnings are given by
normal distributions :

P(s1/H1) = P(s2/H1) = N(0,1) , withg11=q12=1
P(s1/H7) = P(sp/Hy) = N(6,1) , withg1=¢22=¢

while measurements actually simulated fellow :

P(s1/H1) = P(s2/H1) = N(0,1)
P(s1/H2) = N(S,1) , P(sp/Hp)=N(2,1)

So in this test sensor 2 has effectively a wrong
knowledge about H7, and the reliability of sensor 1
varies in function of the signal S due to H7. This is in
accordance with the choice of factors gjj that expresses a
situation where a severe error concerning /2 may occur
simultaneously on both sensors. In this context our
attention has to focus on the values of S much lower
than 6, i.e. typically S<4. Then the curves of figure 1
emphasize the robustness of our approach (¢=0,9), as
regards either the probabilistic approach, that is a

particular case of our method (g=1), or each sensor alone,
which the probabilistic approach does not achieve.

Moreover, the aptitude of the gj; factors to integrate

linguistic or subjective information, considering the low
sensitivity of the results to the choice of a given value for
these coefficients, must be pointed out [5].

4 Management of Heterogeneous Frames of
Discernment

Most often we have to use a sensor S| that provides a
mass function m1(.) on a frame of discernment £1, but in
fact we need an assessment on a frame of discernment £
such that E1CE, either for immediate decision making,

or for combination with other mass functions available
on complementary frames of discernment. For instance
this may occur in case of incomplete learning, or when
some hypotheses are not observable, as regards sensor
S1. So we have to express m1(.) on E.



5-10

The basic solution to that problem consists in
deconditioning m1(.) from E| to E (see appendix A).
The advantage of this solution is that it does not require
any particular condition, and therefore can be always
implemented. Nevertheless, as we shall see, in most
cases it is not the best approach.

A first alternative solution is possible when mi(.) is

obtained from modeling developed in section 2, i.e. it is
the orthogonal sum, according to /, of the mass functions
m;1(.) defined by (2.3), (2.4), and (2.5), or by (2.6),

(2.7) and (2.8). Then, the absence of any Cji,
characterized by ¢;1=0, does amount to ignoring the
corresponding mass function m;](.), as it becomes a
trivial mass function (m;1(E)=1), and is therefore a
neutral element of the orthogonal sum. Moreover, the
other elementary models m;1(.) are not modified
whatever the frame of discernment is, as their focal
elements integrate in ~H; any hypothesis that is different

from Hj, so that —H; may naturally include all the

missing hypotheses. Compared with the previous
method of deconditioning at the level of m1(.), this

approach ensures less losses of specificity measure [4] as
regards initial information.

If m1(.) is directly used in a decision process, we have to
point out that both approaches provide a maximal
plausibility for missing hypotheses, as the latter have
always a plausibility equal to 1. Decision rule (3.12) is
then more suitable than decision rule (3.7), as A; can
integrate the disparity in quantity of information that is
available for each hypothesis.

Another kind of approach is presented hereafter, that is
particular to situations requiring the orthogonal sum of
several sources S; defined on non disjoint respective

frames of discernment Ej such that UEj=E.

4.1 Plausibility Correction Method

This method (see for instance [9]) realizes a global
treatment on the available sources, dealing with unlike
frames of discernment and source combination together
in a same processing. Nevertheless, to implement it, the
sources to combine must be defined on frames directly or
indirectly connected. It means that for a given source,
there must exist at least another one such that their
respective frames are not disjoint, thus having a common
part.

Furthermore, this method is based on the use of some
properties that the plausibility measure only verifies.
Due to one of these properties, the method will be only
able to deduce the plausibility of each hypothesis. In
fact, there exists an infinity of mass functions that
corresponds to this set of plausibilities. In particular, we
can find the one that corresponds to the application of the
minimum specificity criterion. Nevertheless, the relevant
information remains based only on these few

plausibilities. Moreover, the maximum of plausibility is
the decision criterion that is most often used in this
theory, as justified in section 3. So, considering this
criterion as the most suitable in accordance with the
context introduced, the plausibility of each hypothesis is
the only information that has to be expressed in the
following.

Let S1 and S2 be two sources respectively defined on E]

and Ep, such that E=FE|UEp and E =E{NEj. The
plausibility PIH;) of each hypothesis H; after
combination of both sources S1 and S can be rigorously
expressed on the frame E as a function of the information
actually available for each source in relation to their
respective mass functions m1(.) on E1 and m2(.) on E3.
After suitable simplifications we obtain the following

formulation of the relative plausibility of each
hypothesis :

PI(H}) = PII(H) , VHie(E1-Ep) (4.1)
PI(H;) = PIW(H)*PIh(H{E.) , VHie E, 4.2)
PI(H}) = Ph(Hj)*Pl|(E;)/Pl(E:), VHie(Ex-Ep) (4.3)

Because of the simplifications, the expressions provided
are only proportional to plausibilities. Nevertheless, as
the method is used in relation to a decision criterion of
maximum of plausibility, the proportionality ratios of
the plausibilities of the hypotheses are the only necessary
information. Furthermore, symmetrical expressions can
of course be obtain by permutation of the sources.
Therefore, the decision is the same whatever the choice
of development.

Intuitive explanation of the plausibility correction
method may be the following. The method consists in
choosing a reference source, and in refining and
completing its knowledge by means of other sources.
The reference source is S in the present development,

but this choice has no influence, as mentioned
previously.
o)

First, plausibilities of the hypotheses considered by S
and not common to the other source remain unchanged,
which corresponds to the expression (4.1). Indeed, the
other source gives no information about these
hypotheses.

The second step consists in refining the knowledge the
reference source has on the common hypotheses, thanks
to a fusion with the other source on their common part
E.. Indeed, the latter represents the only subset on which

it is legitimate to implement any fusion. This step
corresponds to the expression (4.2). Obviously, such a
step can exist only if there are at least two hypotheses
contained in the common part E,.

Lastly, knowledge of the reference source is completed
by readjusting the plausibility of each hypothesis that is
considered by S and not by S]. So each of them is

redefined relatively to the plausibilities of the hypotheses



of E1 with respect to the common part E, used as a
pivot. This step simply consists in multiplying each of
the plausibilities peculiar to S» by a unique factor
PI(Ec)PI(E:). Such a factor allows to preserve the

proportionality ratio between the plausibilities of all of
the hypotheses considered by the source Sp. This

operation corresponds to the expression (4.3).

Generalization of the plausibility correction method to
more than two sources needs to determine an order of
fusion, because this method is based on a non
associative operation. The best approach consists in
combining always sources that have the largest common
part. With such an order, readjustments are based on the
largest pivot, and so are more reliable. Furthermore, the
maximum of hypotheses are involved in the fusion on
common part. Nevertheless, for some configurations of
sources, this order can still lead to several developments
that are different from a decision point of view. Then it is
necessary to determine the order that leads to the best
performance, thanks to suitable criterion.

4.2 Introduction of Compatibility Relations

All the approaches that have been introduced can be
extended in order to integrate further knowledge about
some similarity that may exist between missing
hypotheses in the initial frame of discernment and the
hypotheses that are considered in it, as regards the
features that are processed.

Such a similarity can be described by a compatibility
relation @) that associates to a considered hypothesis H;

of E1 the set w1(H;) of the hypotheses of (E-E]) to
which Hj; is similar, and that satisfies :

w14)= U o1(H) 4.4)
Hijed

where @1(A4) represents the set of missing hypotheses to
which the considered hypotheses of E1 contained in A4

are similar. Of course the approach imposes that every
missing hypothesis is compatible with at least one of the
hypotheses considered.

Deconditioning method can then be modified so that it
consists now In appending (in the set union sense) to
each focal element defined on £} only the missing
hypotheses of (E-E1) with which this focal element is
compatible. Doing so aims at considering that this
element contains the hypotheses on which it is more
plausible that the missing hypotheses discussed have
transferred their evidence. Thus, the deconditioned mass
function becomes :

m(AU®(A)) = m|(4) , VAeN] 4.5)
m(A)=0 , V AcE, Ag N (4.6)

where N1 is the set of the focal elements of m1(.).
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Besides, the approach using modeling developed in
section 2 can also be modified according to the same
idea, providing on E, for each Hie E1 :

Model 1 :

mi1(HJw1(Hp)) =0 4.7
mj1(~(HJ01(HD)) = q;1*(1-Cj1) (4.8)
mj1(E) = 1-q;1*(1-Cj1) 4.9
Model 2 :

mil(HUw1(H)) = qi1*Cj1 (4.10)
mil(~(HVo1(H))) = gi1*(1-C;1) 4.11)
m;il(E) = 1-gj1 (4.12)

Then mj(.) remains simply the orthogonal sum,
according to i, of the mass functions m;1(.) defined by
(4.7), (4.8), and (4.9), or by (4.10), (4.11) and (4.12).

Concerning the plausibility correction method, some
terms in the expression of the plausibility PI(H;) obtain
for each hypothesis H; on the frame E, after combination
of both sources S] and S?, increase in specificity as a
source may now bring information on its missing
hypotheses thanks to compatibility relations. After
suitable simplifications the relative plausibility of each
hypothesis becomes :

PI(H;) =PIy (H)* Pl( U Hy), VHie(E1-Ec)

w(H)NH =D 4.13)
PI(Hj)= Pl1(H))* Plh(H{/E;) , VHieE, 4.14)
PI(Hj) = PL(H)*Pli( U Hp*PL(Ec)PI(E),

w1 (H)NH#D
VHie(Ey-E;) (4.15)

All the remarks emphasized in section 4.1 remain true.

4.3 Illustration

The deconditioning approach and the plausibility
correction methods are applied on two sources S and 52
that are respectively defined on the frames
Ey={H1,H2,H3} and Ep={Hp H3,H4}. S1 and Sy are
respectively SAR and infrared images of the ground, and
the four classes to discriminate are : field (H]), water
(Hp), forest (H3), building (H4). The conditional
probability densities of the features observed by each
source with respect to each hypothesis of its frame are
identified on actual images as normal distributions that
are assumed to be perfectly representative. Consequently
mass functions are built according to modeling provided
in section 2.2.1, with gj=1 for all / and j.
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Processing of available images provides a confusion
matrix for each source alone (tables 3 and 4), and for
both fusion methods. An element of such a matrix is the
declaration rate of an hypothesis Hj (column) when an

hypothesis H; is presented (row).

Declaration — H H H3 Hy
Presentation Ja

Hj .899 .690 300 |0
Hp 492 499 .800 |o
H3 .526 750 .398 0
Hy .837 129 .340 0

Table 3. Confusion matrix of source 1

Declaration — H] H H3 Hy
Presentation l

H 0 712 320 254
H 0 925 160 .590
H3 0 571 224 .204
Hy 0 .108 300 .889

Table 4. Confusion matrix of source 2

Figure 2 shows the recognition rates (diagonal elements
of the confusion matrix) obtained for both fusion
methods. The main difference is the advantage of the
plausibility correction method as regards Hy4, thanks to a

separate processing of H1, HpUUH3, and Hj in this case.

1 -
0,9 -
0,8 -
0,7 1
0,6 -
0,5 -
0.4
0,3
0,2
0,1

Hl H2 H3 H4

Figure 2. Recognition rate of deconditioning (gray) and
plausibility correction method (black)

Figure 3 shows the same results when compatibility
relations are implemented. In accordance with the
individual confusion matrix of each source, we assume
that H4 is compatible with Hy and A2 as regards
source 1, and that A1 is compatible with A2 and Hy4 as
regards source 2. The only difference with the previous

results concerns the better recognition of A3, thanks to

compatibility relations that ovoid any confusion between
this hypothesis and the missing hypotheses of each
source.

Hl H2 H3 H4

Figure 3. Recognition rate with compatibility relations
(deconditioning in gray, plausibility correction in black)

S Integration of Contextual Knowledge

Contextual information can obviously be integrated in
all the previous processing methods thanks to the
confidence factors ¢;; that have been introduced to this

end in the models elaborated in section 2. As pointed
out in section 3.5, robust values of the g;; can be

arbitrarily determined beforehand for different possible
situations to identify, from the moment sufficiently clear
relations can be established between these situations and
the effect of the confidence factors. When complex
problems arise from that point of view, more efficient
learning methods have to be implemented. Specific
neural approaches have for instance been developed to
this end [10].

Nevertheless, as the g;; are continuous variables, their
most efficient use consists in computing them on line on
the basis of contextual parameters, provided that the
latter are observable. Such a solution is presented in
section 5.1, but considering the operational interest of
adaptative processing based on contextual parameter
measurements, the following introduces different
solutions to this approach in a common framework [11,
12].

So we assume that a particular context z={z{,...,zp} is
defined on a P-dimensional space Z by P contextual
variables z,, that allow to evaluate the sensor reliability.
Moreover, the vector zM={z|M ... zpM} represents the
context measurements that are available.

The problem is to integrate the context measurements
zM in classification processes such as those developed in
section 3, in order to improve their robustness to context
variations. Two methods can be established to achieve
such an integration. Both of them implement the same



combination rule between hypothesis assessments
coming from sensor measurements on the one hand, and
reliability information based on context measurements
on the other hand, but at different levels. This rule is
called the CC Rule (Contextual Combination Rule). Its
presentation needs to define first :

s the inclusive validity domain Dy, as the fuzzy subset
of contexts (DyCZ) in which a mass function my(.) is
valid ;

o the index W as a subset of the set V" of all the indexes

v that characterize the different available mass
functions my(.) ;

o the exclusive validity domain djy as the fuzzy subset
of contexts (dwCZ) in which every mass function
my(.) such that ve ¥ is valid, but no other one (ve )
is valid :

dw= N Dy* N —-Dy, ,VWCV-{O} (5.1
ve W ve W

dg= N -Dy (5.2)
veV

In its general formulation the CC Rule consists in
finding a global mass function m(.) on the frame of
discernment E={H1,...,H]}, considering on the one

hand the mass functions mp{(.), each provided on E by
the orthogonal sum of the mass functions my(.) such that
ve W, and on the other hand a mass function m.(.) on
E-.={dw}. The latter is assumed to be a Bayesian mass

function which expresses the relative confidence we have
in the different mass functions mpA.).

First, a mass function m’(.) on E.XE is obtained from
the mass function mg(.) relative to E; and the mass
functions mp(.) relative to E, which has to be such that :

o the coarsening of m’(.) from E.XE to E. leads to the
mass function mg(.) ;

e the conditioning of m’() from E XE to dyxE
provides the mass function mp(.).

These conditions are verified if :
m’ (dw,A) = m(dw)*mp(4) , YACE,VWCV  (5.3)

Then the final mass function m(.) on £ is obtained by
coarsening the mass function m’(.) from EcxEto E :

m(A) =m(do)*ma(D+ X me(dw)*mp(4) ,
W< V-{ @}
VACE  (5.4)

5.1 Local Contextual Combination Method (LCCM)

In this case a mass function mcijj(.) is associated with
each elementary mass function m;;(.) used by the models
provided in section 2 (in which now g;=1), in order to
characterize its reliability. mcji()) is established in the
following on the frame of discernment E.j;={D;,~Djj},
where Djj is the inclusive validity domain of m;(.).

Let the context z={z1,...,zp} be a random vector of
probability density p(z/z) where zm={zM,... zpM} is

the measurement vector associated to z. Besides, the
validity domain Dj;j is defined according to each

contextual parameter z;,, in the framework of the fuzzy set
theory, by an elementary membership function 1j;,,(z).
The membership function u;j(z) that characterizes the
validity domain Dj; according to the context z is
therefore expressed :

Hij(z) = min{jjp(zy) } (5.5)
u

The probability P(S;/H,,z™) that the sensor S; is reliable

for the assessment of #; if the context observation is z#

can then be obtain thanks to the definition of fuzzy event
probability :

P(Sj/Hj,zm) = | pij(z)* plz/zm) dz (5.6)

Of course, when the contextual variables are certain, the
probability density p(z/z) is replaced by the Dirac
function &z-z"), and (5.6) becomes :

P(Sj/Hj2™) = pij(z™) 3.7

The probability (5.6) can in any case be finally
formalized as a Bayesian mass function mgj(.) such

that :

meii(Di) = P(Sj/Hizm) (5.8)
meij(—Djj) = 1-P(Sj/Hj,z™) 5.9)
meif(Ecij) =0 (5.10)

Two mass functions mpj;(.) (We {1,2}) have now to be

introduced : One of them uses the measurements as if
they were completely reliable (F#=1), while the other is
representative of the total ignorance (W=2). These mass
functions are therefore defined by :

(5.11)
(5.12)

m1ji(.) = mii(.)
mji(E) =1

Applying the CC Rule to the particular mass functions
such that mc()) is mej(.) and mp() are mpyij(.)
(We {1,2}) provides a modified mass function m’j(.)
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that replaces the mass function mj(.) in the models
developed in section 2 :

m’ii(H}) = P(Sj/Hzm)* mij(H}) (5.13)
m’ij(~Hj) = P(SjlHiz)*mj(~H}) (5.14)
m’i{(E) = 1-P(Sj Hj,zm)+P(Sjl H ,2My*mj(E) (5.15)

The orthogonal sum of all the modified mass functions
m’jj(.) according to / and j provides finally the global
mass function m(.) that is used in the decision rule, as
explained in section 3.

In fact the resulting expression of m ','j(.) is similar to the
initial expression of m;;(.) in which the confidence factor
gjj would be such that :

gij = P(Sj/Hjz™) (5.16)

So, the LCCM is strictly the method developed in
section 3, in which gj; is simply expressed by (5.16),

(5.6), and (5.5).

5.2 Global Contextual Processing Method (GCPM)

A unique mass function mg(.) is now considered to

characterize the relative validity of all the mass functions
mjj(.) and all their possible combinations. If W is a

subset of V={1,...,.I}x{1,...,J}, mc(.) is more precisely
defined on the frame of discernment E.={d’}, provided
that djy stands for the fuzzy subset of contexts (dyCZ)
where all of the mj;(.) such that (ij)e W are valid, but
only these ones.

The membership function p;j(z) that characterizes the
validity domain Dj; of mij(.) according to the context z
remains expressed as in section 5.1 by (5.5).

The probability of validity relative to the association W
of mass functions m;(.) is the probability of the

conjunction between their respective fuzzy subsets Djj,
when a contextual observation z/ is available :

P( N Djlzmy=][ min {u;(z)}]*p(z/z™) dz  (5.17)
Gpew (i)ew
The exclusive probability of validity P(d) relative to

the association W of mass functions mj;(.) can therefore

be obtained on the basis of (5.17), thanks to
developments similar to those provided in [13]. This
probability is directly the Bayesian mass function m(.)

that has to be expressed on E :

me(dp)= 3 (DWV-Wixp( N Dylzm), VWzD
W'y (i)W’ (5.18)
wew’

mo(d@)=P( N —DjjlzM)
@ipeV

|W’-W| represents the cardinal of the subset W'-W.

(5.19)

Correlatively, each mass function mp() is the
orthogonal sum of the mass functions mj;(.) such that
(ij)e W, if they exist :

mp()= D
Gpew

mi() . YWD (5.20)

and mgy(.) corresponds to the absence of information :

mg(E)=1 521)

Thus, the CC Rule can be applied in its general form on
(5.18), (5.19), (5.20), and (5.21), to provide the global
mass function m(.) that is used in the decision rule, as
explained in section 3 :

m()=mdg)*mgz (3 X mdwy*mp(.)
WC V-{ 2}

(5.22)

5.3 Unified Formalism

A practical case of interest consists in adding a further
hypothesis to £, corresponding to an unexpected objet
for which no previous learmning is available. This
problem can be managed thanks to the models developed
in section 2 that are used here, as explained in section 4.
The modifications it involves in both methods, LCCM
and GCPM, allow to express them in a same formalism.

Such a common formalism consists in implementing
(5.20), (5.21), and (5.22) in the new extended frame of
discernment. The difference between both methods
appears in the expression of m¢(.) which remains given
by (5.5), (5.17), (5.18), and (5.19) as regards GCPM,
while LCCM has to use :

medw)= II qi * II (-9 (5.23)
GHeW  (peW

me(dg)= TI1 (1-9;) (5.24)
@NeV

with gj; defined by (5.16).

Furthermore, a numerical analysis shows that both
approaches have complementary capacities when facing
adverse situations, as regards the relative intrinsic
efficiency and reliability of sensors, as well as the
accuracy of the contextual observations.

5.4 Ilustration

These methods have been implemented to deal with a
problem of pixel fusion in multispectral image



processing, using the water vapor transmittance as
contextual variable (see for instance [11]). This
application involves two hypotheses (H1=Asphalt,
Hp=Vegetation), and two sensors (S]=2-2.3um, $2=0.4-
0.6um). Previous learning of radiances, as regards a
particular value of the water vapor transmittance,
provides normal distributions of radiances specific to
each sensor and each hypothesis as prior knowledge, so
that the model developed in section2.2.1 is used.
Besides, every membership functions llij(z) is
determined beforehand thanks to the prior estimation of a
physical relation between the water vapor transmittance
and the mean radiance.

Figure 4 shows an example of mean recognition rates
obtained by LCCM, probabilistic solution, and both
sensors implemented alone, when the evolution of the
water vapor transmittance is perfectly known. Results are
presented as functions of the most sensitive mean
radiance difference when the water vapor transmittance is
decreasing from the learning condition to 0.
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Figure 4. Recognition rate :
LCCM (_ __ _), probabilities ( — ... —... ),
sensor 1 ( ), sensor2 ( ............ )

These results emphasize the robustness brought by the
adaptativity of LCCM.

6 Matching of Ambiguous Observations

Implementing  sensors with  orthogonal  spatial
resolutions, may improve the precision of target
localization, thanks to the conjunction of local
observations. It also provides a better separation between
multiple targets in order to count them or to implement
further analysis such as classification processes. For
instance, such a situation occurs when we associate
either delocalized passive sensors that provide local
angle measurements, or an active sensor that provides
distance and Doppler with a passive colocalized sensor
that provides precise angular measurements.
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Nevertheless, dealing with multiple targets in an area of
interest leads to ambiguities in data association, due to
ghosts (erroneous matching), hidden targets, non-
detections, and false alarms, as illustrated in figure 5 in
the case of two delocalized passive sensors.

1,

7
1
]

4

Sensor 2

Sensor 1

Detection of actual targets
Ghosts

Hidden target for sensor 1
False alarm on sensor 1
Non-detection on sensor 2

SOHOD

Figure 5. Ambiguous data association

To face this problem, a global approach of the detection,
counting, localization, and classification functions is
proposed in the following, that is a generalization of the
developments provided in [14].

6.1 Formulation of the Problem

Developments are presented in the case of two sensors,
in order to simplify expressions, but their generalization
to any number of sensors is obvious, and the illustration
in section 6.3 shows the implementation of 4 sensors.

Sensor 1 has N resolution cells x17 that are orthogonal
to the M resolution cells xp™ of sensor 2, as shown in

figure 6. Furthermore x”" stands for the intersection of
cells x17 and x™.
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Each sensor provides a signal in each of its resolution
cells : 517 is the signal provided by sensor 1 in cell x1%,

and s is the signal provided by sensor 2 in cell x272.

Sensor 2

Yy Vv v

7%
»4//}/ 7 !
NN

Figure 6. Definition of resolution cells

—-
—

Sensor 1

Y

N

.

In each resolution cell x1 or xp™, there may be 0, 1, or

several targets. According to the application encountered,
a specific logic of target observability has to be
considered. The following developments are valid for
any of these logics, but for simpler explanation a
particular one will be assumed. It is such that when there
are several targets in a cell x17 (respectively x2™), the
signal provided in this cell comes from the target that is
the nearest from sensor 1 (respectively sensor 2). All the
others are hidden by this first target, and consequently
no information is available from sensor 1 (respectively 2)
about their presence or identity. Nevertheless, it is
assumed that there is at the most one target in an

intersection x/M,

On that basis, the process has to find the most likely
distribution of targets, with their identity, over all the

cells x#M_ as such a conclusion sums up the results of
detection, counting, localization, and identification
functions together. In other words, this consists in
looking for the most likely singleton of :

E={(H\1 521 ANV H12  Hrm  HNM) (6.1)

where Hnm = 0 if there is no target in x?7, and H#"M = |
if there is a target of identity 7 in x"7.

To achieve such a purpose, three different types of
information are considered :

- The likelihoods Cj1" and Cjp of any hypothesis of
identity i are respectively assessed in [0,1] by sensors 5]
and S7 on the basis of every signal 517 or sp™ that each

of them observes, and thanks to their suitable prior
learning (probability distributions, fuzzy knowledge,...).

Furthermore, a confidence factor ¢;17 (respectively g;2™)
with values in [0,1] may be associated to each likelihood
C;i1" (respectively C;2™) in order to characterize its
representativity in the context actually met. Moreover,
the general assumptions made in section 2.1 about Cjj
and gjj are suitable as regards [Ci1"gi1"] and

[Ci2™,qi2™].

- The similarity RPM of signals s1# and s2™ is assessed
on [0,1], thanks to knowledge about physics and
operational context that allows to characterize a
similarity relation between signals coming from a same
object (joint probability distribution, fuzzy relation,...).
Once again, the general assumptions made in section 2.1
about C jj are suitable for R”™m, as the latter is a trivial
case of the generic problem : 1 source (S]=comparator),
2 hypotheses (Hi=similarity, Hp=—similarity), all
gij=1, and incomplete information (no C1 available).

- A logic of matching is defined to integrate the logic of
target observability introduced above. Such a logic leads
simply to a suitable definition of the frames of
discernment and focal elements that are used to model
any available information. Considering the specific logic
of observability introduced above as example, the

likelihood Cj1”? has to express that s17 allows
discrimination on :

Eyn={Hoi"H11%,... . Hi1%,.. . .H[1"} (6.2)

where Hg1” means « no target in x1”», and H;”
means « at least one target in x17, and the identity of
the nearest one is i », for every i from 1 to /. Similarly,
the likelihood Cjp™ has to express that s allows
discrimination on :

Eom = {HopM Hio™M,....Hp™M,.. . .Hp"} (6.3)

where H(2™ means « no target in x27», and H;p™

means « at least one target in x2", and the identity of
the nearest one is i », for every i from 1 to L.

Furthermore, the similarity of two signals 517 and s2™

means in this specific case that there is a target in x/7,
and no other target in front of it, either for sensor 1 or for
sensor 2 (see assumption about hidden targets). So, a
similarity analysis between 517 and s27 allows
discrimination on {47M Pnm} which is a partition of £
defined by :



prm = {(H11 _ Hi, . HNM)} with:
HY # 0 if i=n and j=m
Hij = 0 if i=n and j<m
HY =0 if i<n and j=m
Either HY = 0 or HJ # 0 if i#n and j#m
Either HY = 0 or HJ # 0 if i=n and j>m
Either HJ =0 or Hj 20 if >n and j=m (6.4)

A" = E-P™ (6.5)

Figure 7 shows a representation of P/,

Sensor 2
m
X2

Sensor 1
: HVMH#

Wm0 [d-o

m Either=0o0r#0

Figure 7. Description of PP™

6.2 General solution

A first mass function m°(.) has to be elaborated on the
basis of the « classification information », i.e. all the

likelihoods C;1% and C;2" and their confidence factor.

The frame of discernment of m°(.) must be E, as regards
the purpose of the process.

Nevertheless, according to assumptions of the problem,
the /+1 likelihoods C;17 attached respectively to each of
the /+1 hypotheses of identity H;17 that correspond to a
same resolution cell x17 of sensor 1, and their associated
confidence factor, have to generate a distinct mass
function m17(.) on their specific frame of discernment
Ein. Then, the mass functions m]”() and their
counterparts m™(.) for sensor 2 must be refined from
their own frame of discernment E1P or Ep™ to the

common frame E in order to allow their orthogonal sum
and provide the expected mass function m°(.).

The formulation of each m}7(.) or ma™(.) as a function of

the corresponding C;1”? or C;p™ and the associated

confidence factors has to fit in with the developments
provided in section 2.1, so that it is the orthogonal sum

5-17

of mass functions m;17(.) (respectively m;™()),
according to i, which are expressed by the less specific
model (2.3), (2.4), and (2.5), implemented on C;1” and

qi17 (respectively Cjp™ and g;2™) for /=1. Furthermore,
all expressions of Cj; provided in section 2 according to

the nature of learning and observation (precise value,
probability distribution, or fuzzy membership function)
are suitable for C;17 and Cjp™.

A second mass function m°°(.) has also to be elaborated
on the basis of the « similarity information », i.e. the

similarity R?"m considered for all the hypotheses of
signal association (s17,s2™), having regard to matching

logic. The frame of discernment of 7°°(.) must be E, as
regards the purpose of the process.

According to the definition of the similarity relations,
each hypothesis of signal association (s1%,52™) has to be

considered separately, so that a mass function m%(.) is
first established on {4#m pnm} thanks to the less
specific generic model expressed by (2.3), (2.4), and
(2.5) in section 2.1, as regards the equivalence between
Rnm and the generic problem that has been emphasized
in section 6.1. m°°(.) is then simply the orthogonal sum
of the mass functions m"/7(.), according to » and m.

The orthogonal sum of m°(.) and m°°(.) leads finally to a
global mass function m(.) on E that allows to select the
expected most likely singleton of E, thanks to decision
making rules presented in section 3.

More precisely, the process consists in the seven
following steps :

- Step 1 : for the N*M resolution cells of both sensors,
elaboration of the (/+1) mass functions m;1?() or

mp™M(.) that model the classification information as
introduced above. The corresponding plausibility
functions, that are necessary in the following, are
respectively :

PLiIP(H;™) = 1-qj1 g1 Cj 17 (6.6)
PIp(—~Hj" =1 6.7
and :

PlpM(Hpm) = 1-qppM+qpm* Cip™m (6.8)
Plpm(—Hpm)y=1 . (6.9)

reminding that all expressions of Cjj provided in

section 2 according to the nature of learning and
observation (precise value, probability distribution, or
fuzzy membership function) are suitable for the

elaboration of C;17 and Cjp™.

- Step 2: Refining each of these (J+1)*(N+M) mass
functions from E” (respectively E2™) in E.



- Step 3 : Orthogonal sum of the (/+1)*(N+M) mass
functions in E. As a result of steps 2 and 3, the
plausibility function corresponding to the resulting mass
function m°(.) can be expressed simply for the singletons
of E (only these terms are necessary in the following) :

PIHIY .. Hom  HNM) = (1-K°)-1 *

ITI1 Pl (X170 * TT T Plipm(Xip™) (6.10)
ni m i

with :

X017 = Ho17 if Vi, Hm=0

X017 =—Hp17 if Am, HPM=0

Xj1#=Hj 7, for 1<i</, if Im . Hwm={
V' <n, Hn'm=0
Ym'<m, Hmm'=Q

Xj1n=—Hj", for 1<i<], otherwise
Xo2™ = Hop™ if Vn, HWM=0
Xopm = —Hgp™ if 3n, HWN£0
Xpm=Hpm  for 1<i<] if In: HM=|
Vn'<n, HR'm=0
Vm’<m, Him'=(
Xpm=—-Hpm for 1<i<], otherwise

and in which K° is the combination inconsistency, the
expression of which is not useful for the following.

- Step 4 : Elaboration of the N*M mass functions m"7(.)
that model the similarity information as introduced
above. The corresponding plausibility functions, that are
necessary in the following, are respectively :

Ppinm(pnm) = Rnm
Pinm(4qnm) = |

(6.11)
(6.12)

- Step 5 : Orthogonal sum of these N*M mass functions
in E. The plausibility function corresponding to the
resulting mass function m°°(.) can be expressed simply
for the singletons of £ (only these terms are necessary in
the following) :

Pyl Hnm  HNM) =
(1-K°°)-1 * [T T pinm(xnm)
n m

(6.13)

with :

Xnm = pnm if H?Mz(
HKI=0 for k=n and I<m
HKI=0 for k<n and I=m
Xnm = ghm otherwise

and in which K°° is the combination inconsistency, the
expression of which is not useful for the following.

- Step 6 : Orthogonal sum of m°(.) and m°°() in E to
provide the resulting mass function m(). The
corresponding plausibility function can be expressed for
the singletons of £ :

PI(HIY, .. HNM)=(1-K)-1 *

Pie(H1Y, . HNM) * preo(gl1 | HNM)  (6.14)

in which K is the combination inconsistency, the
expression of which is not useful for the following.

- Step 7 : Selection of the singleton(s) that provide(s) a
maximum of the plausibility function P/(.), according to
the decision principles discussed in section 3.

6.3 Illustration

The implementation of a very simple example is
described, in order to discuss how this method works.
Four sensors are observing a same area, according to the
situation illustrated in figure 8. Each sensor has only
two resolution cells, and these cells are the same ones,
on the one hand between sensors 1 and 3 :

xll =x31 =x11Ux12
%12 =x32 = x21Ux22

and on the other hand between sensors 2 and 4 :

le =x41 =x1 lUxZI
X22 =X42 =x12Ux22

Sensor 2
1 2
L N ‘ i
1 1
X1 K1 12 X3
— (a2}
St St
[=] Q
w) w
= =
L Q
1%} w
2 2
X1 2! 22 X3
— g

f x4l ? x42

Sensor 4

Figure 8. Implementation of sensors

The use of four sensors ensures that a target will always
be seen by at least two sensors with orthogonal
resolution cells in any circumstances, in spite of the
phenomenon of hidden target. So, in principle, the
localization of all the targets is possible. The only



problems that may remain concern the classification, and
mainly the ambiguities in matching, on which we want
to focus. Furthermore, it is assumed that there is only
one possible identity of target, so that the problem of
classification is reduced to a problem of detection
(absence or presence of a target).

The signal in each cell of each sensor is an energy
measurement generated thanks to random variables
which have a normal distribution N(0,1) if there is no
target in the cell, and N(3,1) if there is at least one target
in it. Furthermore, the variables that simulate two
different signals are independent if the signals are not
coming from a same target, and the standard deviation of
their difference is constrained to 0.1 if the signals are
coming from a same target.

In this numerical application the probability
distributions of signals are learned without any problem
of representativity, so that, for the two cells 4 of any of

the four sensors %, g;x=1 and the likelihoods Ciph are
given by the model (2.20) on the basis of :

PskPIHOR) = N(O,1)
PG H1 M = N3,1)

According to their definition (2.19), the corresponding
normalization factors are :

Ri = (2*m)1/2

To complete prior knowledge, the similarity relation
between signals coming from a same target expresses
that these signals are « almost equal », in accordance
with the correlation that is simulated between actual
signals (see above). Therefore, the set of associations

(siPskh)) of signals coming from a same object is

assumed to be a fuzzy subset of the set of all the possible
associations, that is characterized by the membership

function u(sph,sg?") dedicated to cell # of sensor & and
cell 4’ of sensor k. y(skh,skfh "} is drawn in figure 9 as a
function of |sgf-s; 1.

| W

l Skh-Sk n |

-

0.1 0.5

Figure 9. Similarity relation between s/ and sg h
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Simulations have been run for the 16 possible actual

distributions of targets over the 4 cells x#”, including
all numbers and positions of targets. A statistical
analysis of results is presented in figure 10. It provides
the mean recognition rate of the right target distribution
(singleton of E), for all the possible actual distributions,
as a function of a maximum number of ambiguities, i.e.
the rate of the right distribution recognition when we
allow to declare at the most the number of ambiguities
given by abscissa. Ambiguities are multiple declarations
of target distributions, including the right one, when
these distributions lead to the same maximum value of
criterion. Note that it is different from the confusion
notion that characterizes wrong declarations.

Results are shown for three different criteria :

- Classification criterion: it consists in maximizing
PI°(.), which uses only classification information.

- Similarity criterion : it consists in maximizing PI°°(.),
which uses only similarity information.

- Global criterion: it consists in maximizing PI(.),
which uses all the available information (classification +
similarity). It corresponds to the method that has been
elaborated in previous sections.

| Mean Recognition Rate
09
0,8 -
0,7
0,6
0,5 -
0,4
0,3
02 +

0,1 —L/

0

Maximum Number of Ambiguities

1 2 3 4 5 6 7 8 9 1011 12 13 14 1516

Figure 10. Recognition rate of target distributions
a - Classification criterion
b - Similarity criterion
¢ - Global criterion

These results emphasize several behaviors :

- as expected, the method achieves a good recognition of
target distributions (i.e. at the same time a good
detection, counting and localization), without any
ambiguity.

- the two types of information processed (classification
and similarity) show a very good complementarity, as
the result of their association provides a much better
performance than any of them alone.
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- classification information has a quiet good recognition
capacity, but it suffers from a number of ambiguities that
reduces drastically its performance.

- similarity information has a very poor recognition
capacity, and furthermore it suffers from ambiguities.
Nevertheless it allows to reject all the ambiguities of
classification information, and at the same time it
improves the recognition rate of the latter.

7 Target Tracking

The problem dealt with here is that of tracking a moving
target of any possible nature, in a dense environment,
using observations delivered by a set of disparate and
possibly delocalized sensors. One of the main purposes
is to overcome the problem of spurious sources present
in the vicinity of the target. These sources may be due to
intelligent countermeasures, artifacts, or vehicles that are
untracked, for operational or technical reasons. A
situation of major practical interest appears when the
tracking is initialized on objects that are very close
together or even at the same point, such as when a
fighter plane enters an airspace hidden behind or close to
an airliner. Simultaneous tracking of multiple targets
may also be suitably handled with the proposed
approach, as is shown by the extension proposed in
section 7.2,

Unlike classical methods, the concept proposed performs
a filtering directly on the discriminatory features
available in the different resolution cells of each sensor,
rather than on plots provided by a detection procedure
[15]. So, it is elaborated according to a global approach
that integrates in a same processing both tracking and
classification functions.

Although it constitutes no particular limitation on the
concept emphasized, the discussion here presumes that
the target tracked is the only one of its particular identity
in the space being processed, and that a given resolution
cell contains at most one target of any given identity.

The technique used for the filtering aspects is inspired
directly from the Probabilistic Data Association Filter
(PDAF) family of methods developed by
Y. BAR SHALOM from the ordinary KALMAN filter,
to handle multiple detections [16]. These methods differ
essentially from the KALMAN filter by the estimate
updating phase, in which they proceed in two steps :

- First the statistical gating selects the detected plots
located in a given vicinity of the predicted position. The
vicinity is determined so as to contain the target with an
a priori probability greater than a given threshold.

- Then the estimate and its covariance are updated on
the basis of an innovation determined by linear
combination of the innovations individually due to each
plot retained as potential successor of the processed
track. The weighting coefficients are the a priori
probabilities for each of these plots to actually be due to

the target, considering the detection and false alarm
probabilities of the detector used, the predicted position
and its covariance, and the statistical gating threshold.

In a first approximation, the method proposed here can
be interpreted as a PDAF whose detection would operate
at minimum threshold, with Detection Probability =
False Alarm Probability = 1. At the level of the
statistical gating, then, this is equivalent to retaining
and processing one plot per resolution cell located
within the vicinity defined around the predicted position.

The « a priori » probability that weights the innovation
due to each of these plots in updating the estimate is, on
the other hand, modified to reflect the likelihood of the
identity present in the corresponding cell, information
generated thanks to the recognition of identity features
extracted from the signal isolated by the spatial
resolution of the sensors.

The expression for the filtering, prediction, and
statistical gating modules specifically for this modified
version of the PDAF is given in the appendix C. The
following discussion concerns the special development of
the cell weightings then necessary for the innovation,
that requires two indispensable ideas to be defined :

- The sensors are said to be « aligned » if they break
the validation gate down into the same resolution cells.
For convenience here, the sensors are assumed to be
classed in groups of sensors that are aligned among
themselves, while two sensors of two different groups are
necessarily unaligned. Each sensor will thus be denoted
Sjl, where / designates to which of the L groups of
aligned sensors the sensor in question belongs, and j is
its sequence number within the group of J sensors.

- If, for a group / of aligned sensors, x/" designates the
n th of N resolution cells of non-empty intersection with
the validation gate, then the sensors in question

« resolve » the gate if the gate entirely includes each xin.

7.1 Procedure Description

The extraction of features in each resolution cell x/ by
each sensor Sjl is assumed to provide information of the

type considered by the generic model developed in
section 2, and therefore by any of the models proposed in
this section. So we have /*J mass functions mj;(.) per

resolution cell x/7, with each of them being defined
either by (2.3), (2.4), and (2.5), or by (2.6), (2.7), and
(2.8). So they are, from now on, denoted m,'jln(.), by
reference to the resolution cell x/7 to which each of them

relates, and their respective frames of discernment are the
corresponding partitions of E denoted

Ejln={H,'1",“H,'[”}, where the hypothesis H;/" means
that identity H; is present in cell x/7. It will be noted

that the use of the models established above is
advantageous in light of their suitability to the problems



generally encountered, but that this is not
indispensable : the discussion here starts with any given

mass functions mijln(.), which can be obtained by any
other means.

The procedure therefore consists in combining the
various sources mijln(.), each being specific to a sensor

Sjl, a resolution cell xln, and a particular evaluated
identity H;. The combination is performed in such a way

as to provide the likelihood of each possible distribution
of identity hypotheses (including target absence) on the
M resolution cells x of the validation gate. The x™
cells are the intersections of the x/7 cells of the various
groups / of sensors, so that the combination processes
applied offer the best spatial resolution at the end of the
process.

Thanks to a special property of evidence theory, the
combination of the resulting likelihoods with the a

priori localization probabilities (ao,am) of the tracked
target delivered by the filter prediction, directly generates

the a posteriori localization probabilities (89,8m) of the
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target in question. The probabilities o/ and p7 are
relative to the presence of the target in the cell x™
(hypothesis Hm™), while the probabilities o0 and 50
concern its absence in the gate (hypothesis HO0). The
probabilities f” and PO are used to weight the

innovation due to each of the cells x™ in the estimate
update, as was introduced above.

Considering the nature of the problem, the required
combinations must be performed by orthogonal sum of
all of the sources, to obtain their conjunction. This must
be done in the finest common frame of discernment,
which is the set EF of the possible identity distributions
on the various cells x” of the validation gate. As the
orthogonal sum is commutative, the association order of
the various sources is theoretically arbitrary. To simplify
the calculations, however, the approach chosen consists
in associating the sources by order of decreasing
similarity of their frame of discernment, whereas
applying appropriate refinements at each step. Figure 11
shows the resulting logic of operations.

Likelihood
modelisation

Evaluation of identity Hi Scanning of the
by sensor Sjl in cell x 7 useful cells x7

mij In(yon E,‘lnz{Hl-l”,-'Hil”}

Combination among

Refinement and |«

: : m;i()on E "
"aligned" sensorsj 1 g

m™(yon El=(H /" H /"4

m l(,) on El=Ell . xE IN

A

Refinement and combination
among identities H;

Refinement and
combination

among cells n

combination among
“unaligned" sensors [

mF() on EF=Elx.. xEL

Selection of

. . m
assoclalons x = leg I Statistical gating
among cells x

In

Combination with a priori
probabilities o™ of the prediction

Probabilities & on E ©

Developments following this scheme are provided in

PDAF with
m
Probabilities 8 on EO=(HC,....HM Pd=Pfa=1
Figure 11. Combination processing
M
B0 = o0/{cP+ 3 om*Qm)} 7.1
m=1

appendix D. They lead to the expression of the
probabilities 7 and B0 that the filter detailed in

appendix C requires :
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M
pm = om*Qm/ {0+ 3, om*Qm’y (7.2)
m’=1
L
inwhich : gm= [1 Qln (7.3)
I=1
xMCxin

with, for the sensor groups / that resolve the gate :

J -1 J -1 J J
oln =Tl {1-TI(1-T1B;my+ S ([14;n-T1Byjlm)}
j=1 =1 j=1  i=lj=1 j=1 (1.4

and, for the sensor groups / that do not resolve the gate :

J i J 1 J J
oin = T14 g {1-TI(-T1Byn)+ 5. (T1dn-T1Byitm)}
j=1 =1 j=1 i=1j=1 j=1 (7.5)

In both cases, Hy designates the identity of the tracked

target, and the coefficients 4;/7 and By/n represent,
respectively, the expressions :

A ijl" ={m ijl"( Hiny+m ijl"( Eiin)}/
{mygIn(-H gyt n(E ) (7:6)

Bijl” = mijl”(Eil”)/{ mljln(ﬂHiln)jumijln(Eiln)} 7.7

The resulting filter will hereafter be designated the
Multiple Signal Filter (MSF).

Let us note that, if we consider only two identity
hypotheses (i.e. absence or presence of a target in each
cell in question), if the available information is of the
probabilistic type used by the models developed in
section 2.2.1, and if the distributions are perfectly

representative of reality (all q,'jln=l), then there exists a

Bayesian solution to the problem. It is easy to verify
that this solution actually is the special case of the filter
proposed for the discussed conditions. Such a solution
was, for example, used in the PDAFAI to include the
amplitude of the observed signal {17].

On the other hand, as soon as the number of identity
hypotheses exceeds 2 (absence/presence of the tracked
target, in the cell considered), no formal probabilistic
approach is possible any more, since the prediction can
no longer provide the a priori probabilities of the
different identities needed for the Bayesian inference of
the update. One of the advantages of the approach
proposed is therefore to obtain an exact solution for these
situations, which are especially of concem here (see
introduction to section 7). The method described also
makes it possible to manage the uncertainty on the
models and to include data that is not necessarily
probabilistic.

This concept also naturally provides track validation
criteria, typically based on the likelihood of the actual
presence of a target of the desired identity in the
validation gate, in consideration of the various features
observed.

It should also be noted that such a filter is by nature
suited to a given identity, the purpose of the proposed
concept being to reject as effectively as possible those
signals that might be due to neighboring targets of
different identity. In track initialization phase, a battery
of different filters suitable for different identities should
therefore be used. The filter whose identity is most
likely can be chosen progressively using track validation
criteria. This organization also makes it possible to
adopt the most appropriate dynamic model for the
identity processed, for each filter.

Furthermore, in the particular case of unaligned sensors,
similarity relations such as introduced in section 6 can
be integrated in the present processing, in order to
improve matching of ambiguous observations. The
weights OM are then simply multiplied by a
complementary factor PI°°(H™)/PI°°(H0), were PI°°() is
the plausibility associated with the mass function m°°(.)
defined at the stepS of the process described in

section 6.2. This holds because H™ and HO, specific
subsets of E, are entirely included in every focal element
that supports it, whatever the initial mass function
considered here may be.

7.2 Joint Tracking of Multiple Targets

We now propose to extend the single-target concept
above to the joint tracking of multiple targets whose
validation gates overlap. The purpose is therefore to
develop a new Joint Multiple Signal Filter (JMSF) from
the Joint Data Association Filter (JDAF) of Y. BAR
SHALOM [16], using the approach that allowed us to
establish the MSF from the PDAF. Let P be the number
of tracks concerned. All the notations used up to now are
conserved, with an added subscript p to indicate the
track to which the notation refers.

The formulation sought can be obtained by refining the
mass functions m#p(.), defined at the level of each track

(see figure 11), from EF}, to the cartesian product

EX=EF|x.. xEF p, and performing their orthogonal sum
in this new frame of discernment. The result should then
be conditioned and coarsened on the cartesian product of
the E0p={H0p,...,HMPp}, minus the different target
position combinations in which more than one target is
located in a same resolution cell. The mass function
obtained can then be combined with the weighting
coefficients a/”Pp, that would be used in a JPDAF
operating at Detection Probability = 1, similar to those
found in (C1) and (C2) of appendix C for the PDAF.
These coefficients are actually identical to a priori
probabilities in the frame of discernment considered.
This leads us to the a posteriori weighting coefficients



P7Pp mneeded for updating the filters associated,
respectively, with each track p :

pmpp,=D-1* 5 {amPp*Pl(HMPp)*
mp kS [O,Mp ’]
p’e[1,Pl-{p}

xmlxz  #xmP
I1  [ompP p*Ply (H™P )]} (7.8)
p’e[laP]_{p}

where, by convention, mp=0 corresponds to a position

of target p outside the gate, and where D is the
normalization factor that guarantees :

3 Brp,=1 (7.9)

In practice, (7.8) is therefore expressed :

pmPp = D-1*ampp* Omp p*

) [T amp’p*Qmp’y (7.10)
mpe[0,Mp’] p'e [1,P-{pr}
p’ell,P}-{p}

xtnlz, | zxmP

with, for each track p, Q0p=1 and QmP), is given by
(7.3) to (7.7).

7.3 Illustration

Two very simple simulations are used to illustrate some
of the potential advantages of MSF [15], with reference
to the most suitable classical method. The latter consists
in an usual PDAF, associated with a classification before
tracking that aims at declaring at first the identity present
in each resolution cell, thanks to a Maximum

Likelihood criterion. It will be noted PDAFC.

The only attribute considered in each resolution cell is
the observed signal level, with this level being
characterized by its a priori probability density under
the various possible identity hypotheses : N(0,1) for no
target, and N(S,1) when one is present, with S being able
to take different values depending on the target
considered. So, the modeling developed in section 2.2.1
is used

The trajectories simulated are straight and level, at
constant speed, approaching the sensors colocalized in
(0,0) head-on. The dynamic model used in the filter is
the same as the one that generates the trajectories. The
only error introduced at the level of the filter concerns the
track position and velocity initializations. The real
trajectories are in dotted lines and the estimated ones in
solid lines.
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Figure 12. Tracking with a 2D radar in (0,0)
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Figure 13. Tracking with 1 pulse radar and 1 optronic
imager in (0,0)

In figure 12 three targets (S=3, S=4, S=6) are observed
by a 2D radar (azimuth and range), and the one we are
trying to track is target S=4, which is, therefore,
hemmed in between two targets : one weaker in signal
power and the other stronger. Under these particularly
difficult conditions, the MSF converges much faster, and

on the right target, while the PDAFC can only lock onto
the more powerful one, hampered by the unavoidable
limitations of his detection phase. This emphasizes the

inability of the PDAFC to meet the compromise
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between convergence and rejection of spurious sources as
well as FMS does it.

In figure 13 radar range measurements are associated with
azimuth measurements from an optronic imager. Each of
the two targets present is assumed to induce the same
signal level from the two sensors, which is respectively
S=4 and $=6, and the target to be tracked is S=4. In this
context plot processing induces a ghost phenomenon due
to misclassifications of target S=6, i.e. association
ambiguities between the range measurements and
azimuth measurements, of the kind that set off persistent

false alarms in the PDAFC, which therefore generates a
trajectory lying along the plot of barycenters between the
two real trajectories. The MSF on the other hand,
quickly locks onto the right target and tracks it correctly,
thanks to its ability to match the measurements better
according to the identities of the targets that originate
them, and thereby to reject the incorrect identities better.

8 Conclusion

The theory of evidence proves to be an interesting
federative framework for multisensor processing, as it
allows to integrate data and information of disparate
nature, thanks to appropriate modeling that has been
elaborated. On this basis, suitable processings have been
developed to achieve the main functions required in
situation assessment, such as classification, matching of
ambiguous observations, and tracking.

Their major advantage is a better robustness in adverse
conditions, thanks to their ability to manage uncertainty,
unreliability, and incomplete knowledge. They also
allow to get the best out of the available information
thanks to global functional approaches and centralized
upstream data fusion, ie. where data are the most
informative, what they are able to achieve in any case.

Furthermore, they provide useful capabilities for
multisensor  systems implementation, such as
management of heterogeneous frames of discernment or
integration of contextual knowledge, in order to get the
best out of complementary available sensors and ensure
suitable adaptativity.
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Appendix A : Theory of Evidence, Useful
Basic Considerations

The theory of evidence starts from the definition of a
frame of discernment E including / exclusive hypotheses

H; (ie[1,]]). 2E is then the set of the 2/-1 subsets of E.

A few basic functions defined from 2£ to the interval
[0,1] allow to characterize the likelihood of any subset of
E:

- the mass function m(.), that represents the likelihood
of the singletons belonging to a subset assessed, without
possible discernment between these singletons. It is such
that :

Z mA)=1 (AD
ACE
m(@)=0 (A2)

- the credibility function Cr(), which may be
interpreted as a kind of minimal likelihood of a subset,
and which is bound to the mass function thanks to :

CrB)= Y m(4) (A3)
ACB

- the plausibility function PI/(), which may be
interpreted as a kind of maximal likelihood of a subset,
and which is bound respectively to the mass function
and to the credibility function thanks to :

PIBY= T m(A) (Ad)
ANB=
PI(B) = 1-Cr(—B) (A5)

- the commonality function Q(.), which is defined as :

QB= X m) (A6)
ACE,BCA

The focal elements of a mass function m(.) are the

elements 4 of 2E such that m(4) is not null. When the
focal elements are reduced to the singletons H; of the

frame of discernment E, then the mass function m(.) is a
Bayesian mass function, which is identical to the
credibility and the plausibility functions, all of them
being identical to the classical notion of probability.
When the focal elements are all included in one another,
then the credibility and plausibility functions are
respectively reduced to the notions of necessity and
possibility used in the possibility theory.
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Combination of distinct sources

The most legitimate combination rule, according to an
appropriate axiomatic description, is the conjunction
provided by the orthogonal sum, which allows to
aggregate J distinct mass functions m (.) (€ [1,J]) defined

on a same frame of discernment £ :
m()=m1(O)Pm()D .. DBmy) (A7)
and which is such that :

J
m(A4) = (1-K)-1* z IT mj(4))  (A8)
AIN...NAF=A2D j=1

where 4; stands for any focal element of m;(.), and X is

the inconsistency of the fusion, i.e. the degree of conflict
between the different mass functions :

J
K= p3 IT mj(4)) (A9)
AIN..NAy=2 j=1

This rule can be expressed very simply on the basis of
the respective commonality functions :

J
O(4) = (1-Ky 1* T1 9i(4)
j=1

(A10)

Thanks to the definitions provided above, (A10) can be
applied to the plausibilities of singletons Hj.

Nevertheless, the implementation of the orthogonal sum
is meaningful only if the inconsistency is not too
important, i.e. if their is no major conflict between the
different sources. Such a conflict may arise in different
circumstances, for instance when sources are not reliable,
when the frame of discernment is not exhaustive, or
when sources are not assessing the same object because
of spatially ambiguous observations. According to the
problem encountered, different attitudes are possible.
First, instead of wusing the inconsistency for
normalization, it may be assigned to the empty set, to
the whole frame of discernment, or to a further singleton
HJ+1 added to E with deconditioning (see below) on the

new frame. Another way consists in implementing a
disjunction :

J
m(4) = > I mj(4;)
AQU..Udf4  j=1

(Al1)

or an adaptative law between conjunction and

disjunction :
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J
md)= X I1 mj(4)) +
A1N...NAF=4  j=1
J
)y I mj4))
A1U... U4 =4 j=1
A1N...NAj=

(A12)

Different convex combinations are also possible, either
between conjunction and disjunction, or directly between
source assessments.

All these laws are generally commutative (except the
convex combinations), but several are not associative
(nonetheless the orthogonal sum is associative).
Furthermore, when applied to probabilities or
possibilities, which are particular cases of plausibility
functions, they generally do not provide outputs of the
same nature (except the orthogonal sum applied to
probabilities).

Reliability management

The lack of reliability of a source is managed by
discounting its mass function m(.) at level 4. This

operation provides an updated mass function md(.) such
that :

md(4) = (1-d)*m(4) ,
ma(E) = d+(1-d)*m(E)

VACE, A#E (A13)

(A14)

Management of frames of discernment

Four basic operations allow to manage both granularity
(refining / coarsening) and exhaustivity (conditioning /
deconditioning) of frames of discernment :

(i) A refining R associates to each hypothesis H{l of a
frame of discernment El={H1l,....Hn11} a subset
R(H;1) of another frame E2={H12,...,.Hp2}, such that
{REHD),....R(HN D} is a partition of E2. So a mass
function m!(.) defined on E! provides a mass function

m2() on E2 thanks to an operation of minimal
extension :

m2(R(A)) = ml(4) , VACE! (Al15)
(ii) A coarsening C is the inverse operation of a refining
R (C=R-1), so that a mass function ml() on El is
obtained from a mass function m2(.) on £2 thanks to :
ml(A) = by m2(B) (A16)
BCE2

A={H;1/R(H; YN B2}

(iii) Conditioning allows to specify an assessment by the
introduction of a further information. More precisely, the
certainty of a proposition A is expressed by a mass
function m 4(.) such that :

mq(4) =1 (A17)

and the conditioning of an initial mass function m(.)
according to this proposition consists in combining it
with m4(.) :

m(JA) = m()D m4() (A18)

(iiii) Deconditioning consists in obtaining, from a mass
function m1(.) defined on E1, a mass function m(.) on a
frame of discernment E broader than E1 (E1CE). m(.)
must be such that its conditioning on E] is exactly
m1(.). Among all the mass functions that satisfy this

condition, m(.) is selected according to the principle of
minimum assignment :

m(AU(E-EY)) = m1(4) , VACE] (A19)

Appendix B : Statistical Learning Modeling

The search for all the models satisfying the three axioms
proposed in section 2.2.1 is led by progressively
restricting the set of possible models.

Axiom 3 : Consistency With the Bayesian Approach
Development

Let mg() be the mass function representative of
information source Sp consisting of the a priori
probabilities P(H;). mg(.) is then a Bayesian mass
function defined by :

mo(Hi) = P(H;), Y ie[L,] (B1)
mo(A)=0, ¥ AzHi, ie[L,]] (B2)

The desired consistency requires that the orthogonal sum
of the mass functions mj(.) and mp(.) produces a

Bayesian mass function mp(.) in conformity with the

Bayesian inference (2.10) whenever the distributions
p(sj/Hj) are perfectly representative of the densities

actually encountered, and thus whenever g;=1 for any i

and j. This axiom should, in particular, remain true for
any subset of combined sources S; delimited by

jeJ'C[1,J]. Concretely :

mp()={ B mji() } D mp() (B3)
jeJ’

should under these conditions therefore verify :



mp(H}) = {[m(sj/Hi)]*P(Hi)} ! LT p(si/ H*P(Hp)} 5

J k j
VHieE (B4)

Moreover, equations (B1), (B2), and (B3) lead to :

mp(H) = {TIPGCHYI* PCH} | X ATIPHHRI*PEHR)}
j ko J
VHieE (BS)

By satisfying (B4) and (B5) jointly for any J'C[1,J] we
lastly define each mj;(.) by its plausibility function using
the 7 equations :

Pli(Hy) = Kj*p(sj/H}) ,  ie[L]] (B6)
in which K is a unique parameter for the / equations,
defined simply by :

Kje [{Z p(si/H}-1, {max[p(sj/Hp)}-1] (B7)
i i

These bounds on X are required only by the intrinsic

nature of the idea of plausibility, which has to remain
less than unity, while the sum of the values it takes for
events constituting a partition of E (the H; themselves,

here) must be greater than unity.
Comments

The conclusion thus drawn from Axiom 3 calls for a few
comments. Firstly, in the general case where />2 , for
each value of K; other than the minimum required by

(B7), there exists an infinite number of possible mass
functions, defined by a system of /+1 equations (/
equations (B6) and the sum of the masses equal to 1)

with 241 unknowns.

For the minimum value of Kj;, the result obtained always

amounts to a unique, and moreover Bayesian, mass
function :

mi(H)) = p(sj/Hj) | X p(sjiHE) , Vi€ [1,1] (B8)
k
mj(4)=0, V¥V A#H;, ie[L.]] (B9)

Of the various solutions obtained for the maximum value
of K s there exists a consonant solution, unique on the

set of solutions found, that corresponds to the model
proposed by G. SHAFER on the basis of this
characteristic alone, for a context similar to that of the
present Axiom 3 [1]. To give a practical expression to
this solution, let us suppose that the p(s/H;) are
arranged such that p(sj/H 1)2p(sj'/H2)2...Zp(Sj/HI). ‘The
focal elements are the / subsets of £ :

Aj= U Hg, ie[1,]]
ksi

(B10)
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and the corresponding masses are given by :

mAD = Kp(sH)) B11)
mj(A4;) = Ki*{p(sj/Hp)-p(sj/Hi+1)}, pour I<i<l-1 (B12)

It should nonetheless be pointed out that this last
solution does not satisfy Axioms 4 and 5, and that it
therefore cannot be retained in the following.

Let us lastly say that, in the ideal case where the
distributions p(s;j/H;) are perfectly representative of the

densities actually encountered, a maximum likelihood
procedure requires retaining the hypothesis H; that will

maximize p(si,...,sf/H;). Yet since the hypotheses H;

are singletons of the frame of discernment E, and
p(s1,...,s1/Hj) is the product of the p(s;/H;) provided by

the 7 independent sources Sj, the plausibility PIH))
obtained after associating the sources S; is expressed,
using (B6), by :

PI(H}) = Kf*p(s1,....s//H}) , ¥V ie[1,]] (B13)

in which the coefficient K, independent of #;, integrates
the K terms and the inconsistency of the combination.

To remain consistent with this particular case, any
decision procedure to designate the most realistic
hypothesis must, for our problem, exclusively maximize
a monotonic increasing function of the plausibility
PI(H,) alone, obtained after combining the sources ;.

Axiom 4 : Separability of Hypothesis Evaluations

This axiom consists in considering that each mass
function mj(.) sought is itself the resuit of a combination

between / mass functions m,'j(.) Ge[LID:

mji()= 8% mij(.) (B14)
i

A mass function mjj(.) also has three focal elements (Hj,
-Hj, and E), whose masses depend only on the value
p(sj/Hj) and the corresponding factor gjj.

Since the hypotheses H; are the singletons of the frame of
discernment E, the plausibility P/;(H;) is proportional to
the product on k of the Plgj(H;) associated with the
mjj(.). After factorization of the product on & of all the
Plij(—Hp), it is finally expressed :

PI(H) = Kf* {mij(Hiymf{ EYY {my(~H iy rmif E)},
i [1,]] (B15)

in which the factor Kf; is independent of the hypothesis
Hj concerned.

Holding to constraint (A6) as required by Axiom 3 will
then permit the probability p(sj/H;) alone to be
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associated with mass function mj;(.) alone, for g;=1,
only if ;

{mij(Hy+mi( E)} {mij(~H{)+mii(E)} = Ri*p(sj/H)
(B16)

in which R; is a normalization constant independent of
H;, whose possible values depend only on the
distributions p(sj'/Hi) actually taken into account, as we

shall see in the following. In practice, this constant
allows us to consider the general framework where the
p(sj/H;) are known only relatively, ie. to within a
normalization gain.

Expressed parametrically as a funcion of the level of
uncertainty mji(E), (B16) procures the desired mass

function :

mii(H)) = {Ri*p(sj/Hp)-mi(E)}/ {1+R*p(si/Hp)}  (BIT)
mii(~H}) = {1-Rj*p(sj/H})* mii(E)}/{1+R;* p(s; H})}

(B18)
mii(E) = fIR*p(si/Hp] € [0, Ri*p(sj/H)] (B19)
in which fis any function verifying simply (B19).

This condition (B19) is required by the mass idea
(included between 0 and 1), which also limits the
possible values of R; as a function of the distributions

p(sj/H;) used, and does so independently of the measures
sj actually observed :

Rj € [0, (max{p(s;/H)})] (B20)
Sy, i

')

It is furthermore possible to show that these conditions
are sufficient in order for the coefficient X; in expression

(B6), calculated for the combination (B14), to verify the
constraint (B7). This can be done simply by showing
that the expression for Kj is then an increasing

monotonic function of each mj;(E), whose extreme values
make it possible to satisfy the interval (B7).

If we introduce the factor g;; into the expressions (B17),
(B18), and (B19) in terms of discounting, the mj;(.) are
finally given by :

mii(H) = qif* {Rj*p(sj Hi)-Ai}/ {1+R*p(si/Hj)}  (B21)
mii(~H}) = qij*{1-Rj*p(sj/H)* A}/ {1+Rj* p(sj/ H)}

(B22)
mjji(E) = 1-qjitqi*A; (B23)
in which R; is still defined by (B20), and 4; by :
Aj=fIRj*p(si/H)] € [0, R*p(sj/H})] (B24)

The general expression of the models m;() that satisfy
Axioms 3 and 4 is thus found by (B14) applied to

(B21), (B22), and (B23). An infinite number of
solutions thus still fit our problem.

Axiom 5: Consistency With the Probabilistic

Association of the Sources

Considering the special structure (B14) of the mass
functions m;(.) complying with Axioms 3 and 4, and the

associativity of the orthogonal sum, Axiom 5 will be
satisfied for models such that, if the gj; are equal to 1,

the mass function m(.) defined by :

mi)= ® mii) (B25)

J
mii(.) = FIR*p(sj/H})] (B26)

is identical to the mass set m’(.) obtained by direct
modeling, using the same function F(.) :
m'i(.) = FIII{R*p(sj/H})}]

J

(B27)

The mj;(.) verifying (B17), (B18), (B19), and (B20), in
the combination (B25), yield :

mi(H;}) = (V*X-Y*W)(V*X+X-T*W) (B23)

mi(—H;) = (X-Y*W)/(V*X+X-Y*W) (B29)

miE) = Y*W/(V*X+X-Y*W) (B30)

with the definitions :

V=TI{Rj*p(sj/H,)} (B31)
J

W =TI{1+Rj*p(s;/H})} (B32)
J

X= H{1+m,'j(E)} (B33)
J

Y = [Im(E) (B34)
J

and the constraints :

mii(E) = fIR*p(sjH)] € [0, Rj*p(sj/H})] (B35)

R;j e [0, (max{p(s;/H, -1 (B36)

s j’i

At the same time, the mass set m';(.) is written :

m'{(Hj) = {V-m'{(E)}/{1+V} (B37)

m'i(—Hj) = {1-V*m'(E)}/{1+V} (B38)

m'{(E) = AAII{R*p(sj/H)}] e [0, II{R*p(si/Hi}]
J J (B39)

in which ¥ is still given by (B31), and the R; are also
constrained by (B36).



We can go about comparing the mass sets m;(.) and
m'i () by letting mg{E)=m'(E) in (B30). Then
expressions (B37) and (B38) are equivalent to
expressions (B28) and (B29), respectively, which means
that under all circumstances m;j(H)=m'{(H;) and
mi(—H;)=m'{(—H;). On the other hand, (B35) and (B39)
will be equivalent for the same function f; through (B30)
still under the constraint m;(E)=m',(E), only for the
following two functions f:

fix)=0, Vx
fx)=x

After examination of Axiom 5, only two models are left
that simultaneously satisfy the three axioms. Both are
defined by (B21), (B22), (B23). They differ by the fact
that 470 for one while 4=Rj*p(s;/H) for the other, the

Rj being constrained by (B20) in both cases.

(B40)
(B41)

Summary of the Models Obtained

There are finally only two models, then, that jointly
satisfy the three desired axioms. Both meet the
decomposition :

mi()= & mi() (B42)
i

Model 1 is particularized by :

miji(Hj) =0 (B43)
mij(~H}) = qii* {1-Rj*p(s;/H})} (B44)
mi{(E) = 1-qjj+qij*Ri*p(sj/H) (B45)
and Model 2 by :

mii(H}) = qi* Ri*p(sj/ H)/{ 1+R;*p(sj/Hi)} (B46)
mij(—H}) = qi/ {1+R* p(sj/Hi)} (B47)
mi(E) = 1-qj (B43)

In both cases, the normalization factor R; is simply
constrained by :

Rj € [0, (max{p(sj/H})"1] (B49)

Ky j,i
Appendix C : Filter Expression

The filtering, prediction, and statistical gating modules
are those of a PDAF that would operate at minimum
threshold with Pd=Pfa=1 .

Filtering

The o coefficients are given by :
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o0 = M*(2*r/yyr/2*(1-Pg)/Cy 1y
om = exp[- 0.5* (x-xp) TVg 1 (xm-xp)] (C2)
in which :  Cp = rr/2/T(1+r/2) (C3)

xk and Vi designate the predicted position and its
covariance, at time . » is the common dimension of xj
and x™. Pg represents the a priori probability that the

target is in the validation gate, considering the choice of
statistical gating threshold 7.

The pm coefficients are determined from the o™
coefficients by (7.1) to (7.7). The estimated state Xj/k

and its covariance Pj/, which are outputs of the
procedure, are then updated at time & by :

Xk/k = Xk/k-1+Gr*zk (C4)
P/ = BO*Pyi1+(1-PO* (-Gi* HY* Pryk-1+Px, -~ (C5)

in which :
Pr=Gp*[( T prxzppm*zpm D)z 2 T1* Gy T (Co)
m#0
M = xM-xj (o))
zg= X (P*zpm) (C8)
m#0
Gk =Ppr-1*HT* V! (C9)

H is the position observation matrix.

Prediction

The predicted state, Xz/k-1, and its covariance, Pi/-1,

used above for updating the filter, are calculated from the
state Xk-1/k-1 and its covariance Pj-1/k-] estimated at

the time of previous observation -1 by the filtering
module :

(C10)
(C11)

Xk/k-1 = F*Xk-1/k-1
Plik-1= F*Pi-1/k-1*FT+Q

in which F is the state transition matrix from one
observation time to the next one, and Q the noise
covariance matrix on the state.

The predicted position measurement x; and its
covariance Vi, used by the filtering and gating modules,
are then determined by :

xf = H*Xp/k-1
Vi=H*Pijp-1*HT+R

(C12)
(C13)

with R designating the noise covariance matrix on the
position measurement.
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The cells x/7 and x™ to be processed (figure 11) are
selected by the tests :

Glnexgy TV T el

> y (C14)
em-xp) T* Vg 1*(xem-xg) 2 ¥

(C15)

Appendix D: Combination Process for
Tracking

The elaboration of the combination processing suitable
for the tracking problem tackled in section7 is
developed according to the scheme provided in figure 11.

Procedure at the Level of Each Resolution Cell

The first step consists in associating the mass functions
m;iin() defined on a same frame of discernment
y

Efn={Hn~Hin}, as regards the various sensors j of a
given alignment group /. For each E;In, their orthogonal
sum directly yields the mass function min() defined
by :

J
miln(HIny = { T1 [myin(Hryvm i dm)]-
j=1
J
[T mgln(Edmy/(1-Kidn) O
j=1
J
min(~Hin)y = { T1 [mjfIn(=H iy +min(Efm))-
j=1
J
I1 myin(EIm}(1-Kdny (D2)
=1
J
miln(Edny = { T1 min(E#m)}/(1-K i) (D3)
j=1

in which K,/ represents the inconsistency of the

combination, the expression of which is not necessary for
the remaining discussion.

The refinement of E;/7 in the set Eln={HIn .. H/n}
of the identities attached to the cell x/# allows the
minimum extension, in the common frame of
discernment E/7, of the m,'ln(.) relative to these different
identities. The orthogonal sum of the mass functions
obtained leads to the mass function m/7(.). Then all we
have to do is express the plausibilities of Hpn and of

—Hjln, which are all that is needed for the rest of the
discussion :

PUn(Hiny = (1-Kiny- VX [mgn(Hinyymgin(E iy *
I-1
I1 [min(-HilnyrminEIn] (DY)
=1

Plln(—Hiny = (1-KIny- 1% [mfdn(~H ny+m fdn g i) *
I-1 I-1
LT mn(=Hitny+m Jr(Edm)- T1 mdn(—H iny+
=1 =1
1-1 I-1
S {mln(HEm* 1 [my In(-HjAnyrmpIn(E;m)]3]
i=1 i=1 (D5)

1'#i

in which K/ is the combination inconsistency, the
expression of which is not usefull for the following.

" Summary at the Level of the Validation Gate

So two cases should be distinguished, depending on
whether the x/7 resolve the validation gate or not (see
introduction of section 7). If they do, then the E!»
relative to each x/7 cell need only be refined in the set
El=Ellx.. xEIN of possible identity distributions on the
cells in question, and the orthogonal sum of the
resulting minimum extensions can be performed. The
very special nature of the associated focal elements, each
being specific to a distinct component of the cartesian
product, allows a relatively simple expression for the
only plausibilities we now have to evaluate on the basis
of (D4) and (D5). These plausibilities concern the N

hypotheses Hin of the presence of identity Hj

respectively in the cell xIn, to the exclusion of any other
cell, and the hypothesis HO of the absence of identity H
in the gate. These hypotheses are in fact specific subsets

of E/, as there exists one and only one target of identity
HJ in the gate, according to the axiom adopted to start

with (see introduction of section 7). This leads to :

N
PI(HO) =TT Piin(—Hpin) (D6)
n=1
N
Pil(HIny = piln(Hnyx T1 Piln’(-Hpn') D7)
n’=1
n’#£n

If the x/7 do not resolve the validation gate, an
additional prior refinement should be performed from

each En to a set E’Z”={H11”0,H1["1,...,H]an,Hllnl}
to split each hypothesis H{n between, on the one hand,
a similar hypothesis H;71 simply relative to the part of



xin covering the gate, and, on the other hand, an
additional hypothesis H;/10 relative to the part of xin

outside the gate. The operations conducted in the case
where the gate is resolved are then conducted on the

modified set E/=E'!lx...xE'IN. However, hypothesis
HIn is now reduced to the presence of the identity Hy
just in that part of cell x/? covering the gate, and
excluding any other cell defined in the gate. Hypothesis
HO, though its definition remains unchanged, also

corresponds to a different subset of E!l. The result is the
modified expressions :

PI(HO) =1 (D3)
Pl(HIny = piln(Hn) (D9

The groups / of unaligned sensors are then combined in
both cases by refining the E!/ in the common set

EF=Elx.. xEL, and performing the orthogonal sum of
the associated minimal extensions. This step reflects the

fact that we are interested in the intersections x™ of the

cells x/7 (see section 7.1). As each of the associated focal
elements here is still specific to a distinct component of

the cartesian product, the plausibilities of H0 and of the
hypotheses " of presence of identity Hy in cell x™, to
the exclusion of any other cell, are expressed for the
resulting mass function mf () by :

L
PIF(HO) =T] PI(HO) D10)
=1
L
(D11)

PIF(Hmy =T Pl(HIn)
=1

xMCxin

Determination of Weightings M and Practical
Expression for the Filter

The last step consists in combining this result with the
a priori probabilities o™, which constitute a Bayesian
mass function on EO={HO Hl .. HM} As EO is a
partition of a subset of EF, conditioning and coarsening
mF() from EF to EO makes it possible to take the
orthogonal sum with the set of the a#. The resulting
mass function, which is Bayesian over E0, is directly the
set of probabilities p” we are looking for :

M
B0 = 0% PIF(HOY/ {o0* PIF(HOY+ 3. om* PIF(HM)}
m=1 (D12)
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M
pm = o PIE(Hm)Y/ { o0* PIF(HOY+ Y. oom ™% PIF(Hm )}
m'=1 (D13)

Expressions (D1) to (D13) can then be summarized by :

M
B0 = o0/{a0+ 3, am*Qm} (D14)
m=1
M
pm = am*Qm/{o0+ 3, om*Qm’y (D15)
m’=1
in which :
L
om = PIF(Hm)/PIF(HO) = T1 Qin (D16)
=1
xmCyln
with, for the sensor groups / that resolve the gate :
J -1 J -1 J J
Oln =T14 i {1-TIQ-TIByny+ X ([14;/n-T1B;;tm)}
j=1 =1 j=1 =1j=1 j=1 (D17)

and, for the sensor groups / that do not resolve the gate :

J 1 J I J J
Oln = T4 itr1{(1-TI(0-TIBy/m)+ X (T4 5n-T1B;m)}
j=1 i=l j=1 i=l1j=1 j=1 (DI8)

In both cases, the coefficients Aijl” and B,'jln represent,
respectively, the expressions :

A ijl” ={m ij!”( Hilny+m ijl”( Einyy/

{migIn-H Y emign(E i)} (D19)

B ijl” =m ,-jln( Efny/{m ijln(ﬂ Hilny+m ijln( Eim}  (D20)
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Abstract

Three PDE image processing methods are dis-
cussed: Mumford-Shah variational methods, peer
group averaging (PGA), and Osher-Rudin shock fil-
tering. Each of these methods is used in segment-
ing images into homogeneous regions separated by
distinct boundaries; reducing the image to regions
and boundaries extracts the image structure in a way
that can be interpreted automatically by parsing al-
gorithms.

Mumford-Shah algorithms approach the problem
of segmentation as one of approximation. The ap-
proximation to the image is represented by the ho-
mogenized regions and their boundaries. The best
approximation is found by minimizing an objective
function that controls 1) degree of approximation, 2)
smoothness within regions and 3) extent of region
boundaries. These three objectives are controlled by
weight parameters; choosing these parameters cor-
rectly is a problem of major concern for Mumford-
Shah algorithms. Once the parameters are selected
the objective function can be minimized via an en-
ergy descent method resulting in a nonlinear PDE
with the original image as initial data. Evolution
under the PDE produces the desired approximation
and image segmentation. Recent work by Hewer et
al. has implemented this procedure in a manner
that minimizes the parameter selection problem and
greatly reduces the number of descent steps needed
for an acceptable approximation. This reduction is
due in part to the use of PGA as a preprocessing
step: the initial image data is replaced by the PGA-
filtered image. Since PGA produces results that are

*This research was supported by the Office of Naval Re-
search under ONR Grant Number N00014-96-1-0456.

near the desired Mumford-Shah approximation only
a few descent steps are required.

Peer group averaging is a discrete approximation
method that starts with the initial image and then
makes processing decisions based on the local peer
group. This peer group is determined by nearness
in intensity value: the gray level of the central pixel
of a local window is compared with the other pix-
els in the window and the closest ones form the peer
group. The average over the peer group is then used
to replace the central pixel intensity value. This pro-
cedure converges quickly; usually only two or three
iterations are needed. In this method the parame-
ters consist only of the window size and the number
of pixels in the peer group. These parameters are
easily selected for enhancing specific targets.

PGA is closely related to the shock filtering
method of Osher and Rudin. In shock filtering im-
age information moves outward from the centers of
regions. This outward motion forms standing shock
fronts at the boundaries of regions. The convec-
tive PDE describing this evolution arises naturally
in many situations including flame front propagation
and crystal growth. Shock filtering preserves edge
location (unlike many noise reduction methods such
as Gaussian smoothing) and at the same time main-
tains the total variation of the image. This means
that it removes noise while enhancing the contrast
across edges. This effect is desirable in ATR appli-
cations. PGA and shock filtering have been shown
to be equivalent for 1d signal problems.

Applications are presented to illustrate the
Mumford-Shah, shock filtering and PGA image pro-
cessing methods.

Paper presented at the RTO SCI Lecture Series on “Application of Mathematical Signal Processing Techniques
to Mission Systems”, held in Koln, Germany, 1-2 November 1999, Paris, France, 4-5 November 1999;
Monterey, USA, 9-10 November 1999, and published in RTO EN-7.
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1 Introduction

In the last decade, a new image processing tool has
been developed that uses partial differential equa-
tions to generate scale space decompositions of an
image. Such decompositions are analogous to the
multiresolution decompositions provided by wavelets
or Fourier transforms except that the scale parame-
ter for PDE processing is the time evolution under
the PDE with the original image as the initial data.

Variational scale space image decompositions are
described in Section 2. This approach utilizes an ob-
jective function £ = E(g,u, B) that depends on the
original image g as well as an approximation v and a
boundary function B. Typically E contains a penalty
term that measures the difference between g and u,
another penalty term for the nonsmoothness in v and
also a penalty term for the length of the boundaries of
the regions in the image. This latter term is needed
to control the number of region components in the
final segmentation: too many components and the
result is not useful.

A variety of methods have been developed to im-
plement this approach. These include region merg-
ing schemes used by Koepfler and others [16], [17],
applying homotopy type methods to the objective
function in order to guarantee convergence of descent
methods to global minimizers such as the GNC ap-
proach of Blake and Zisserman [4], and using the
Euler-Lagrange PDE associated with the objective
function with the boundary B intepreted as a con-
tinuous function rather than a binary process. For
general references to variational methods and PDEs
related to image processing see [21] and [29].

Each of these approaches has advantages and dis-
advantages. For example, region merging generally
produces excellent results and is easily adapted to
a multichannel form that can accept multiresolution
or multispectral image data as input; however region
merging is computationally intensive and may not
be appropriate for real-time applications. Time con-
siderations also place limitations on the number of
iterations that can be used in steepest descent pro-
cedures for other variational methods. This means
that we must usually forego the luxury of finding the
global minimizer of the objective functional and in-
stead seek an approximation that is acceptable rather
than optimal.

One way of handling this problem is to modify
the image prior to applying the PDE. For example
if we desire a very uniform approximation with few
regions then Gaussian smoothing provides a fast pre-
filter. Unfortunately this type of smoothing degrades
edges and can shift their position; this means that
the prefiltered image is somewhat removed from the
variational minimizer and thus the number of PDE

descent steps needed to reach the minimizer may not
be reduced sufficiently for speedy computation.
What is needed then is a prefiltering technique
that can quickly smooth interior regions without de-
grading or moving edges. This brings us to peer
group averaging (PGA). In this method the pixel in-
tensities are adjusted based on local peer groups so
that edges are respected. Typically this method con-
verges very quickly, usually within 2 or 3 iterations.
As such it provides a excellent prefilter for variational
methods and acts as a starting point for a variety of
other applications. PGA is described in Section 3.
Historically PGA was preceded by a closely re-
lated method of Osher and Rudin called shock filter-
ing. This method uses a nonlinear convection PDE to
propagate information from the interiors of regions
in a way that smooths the region. At the bound-
aries of regions a standing shock forms; this leads to
contrast enhancement at the edges and preserves the
total variation of the original image. This method

and its connection to PGA are described in Section
4.

2 Variational
Approximation and Boundary De-
scription
A pgeneral variational framework for image seg-
mentation and approximation has been developed by
Hewer et al. [14] that simplifies and systematizies
approaches that had previously been considered sep-
arately, especially those with Mumford-Shah objec-
tive functionals [22], [23], [24] and those considered
by Geman and others [10], [11], [12].
To set the stage, suppose that we are given a
blurred image g over a domain §:

g=Auo+7 (1)

where A is the blurring operator, ug is the unblurred
image and 7 is the noise. One approach to segment-
ing and approximating such an image consists of find-
ing an approximation u and a boundary set K that
minimizes an objective functional of the form

E(w,K) = w /(Au—g)2+w2 /Vu-Vu
Q\K Q\K
+ ws3 /da (2)
K

where the last integral term corresponds to the
length of the boundary. The scalars wy,ws and ws
are weighting factors that determine respectively how
closely Au approximates g, the smoothness of 4 and
the extent of the boundary. Without loss of general-
ity we may assume that wz = 1. Functionals of this



type are often referred to as a Mumford-Shah func-
tionals. See [21] p.24, [22], [23] and [24] for details.

Unfortunately numerical procedures for minimiz-
ing the Mumford-Shah functional encounter book-
keeping problems associated with tracking regions
and their boundaries. These problems can be traced
to the binary nature of the boundary description as
embodied in the boundary characteristic function x;,
which takes on the value 1 on the boundary K and
0 elsewhere. Binary descriptions of boundaries may
be appropriate in some special cases but for most
problems the transitions between regions can occur
over several pixels rather than abruptly. Moreover
the mathematical view of the boundary as the dif-
ferential of a region (hence the notation R for the
boundary of a region R) underscores the inherent
sensitivity of the boundary description process; this
is entirely analogous to the sensitivity of derivatives
with respect to noise.

For these reasons, it often is appropriate to spec-
ify boundaries with a function B taking continuous
values between 0 and 1. Such a function might be
viewed as a probability boundary description but we
do not explore that issue. Instead our main concerns
are utility and ease of numerical computation.

To accommodate a continuous boundary function
B, the Mumford-Shah functional could be recast as

E(u,B) = w /Q(Au -9)?2(1-B):? (3)

+w2/Vu-Vu(1—B)2+/Bz
Q Q

where w; and w, are scalar weights. Here we have
replaced the integrals over Q\K by integrals over
with integrands multiplied by (1—B)?, the idea being
that since B & 1 is near K, the integration of terms
times (1 — B)? over K is nearly 0. Similarly the
boundary length integral has been replaced by the
integral of B2.

There is a significant amount of related work in
image processing and vision. Early work in this
area dealt with scale space decompositions induced
by Gaussian smoothing operators and the motion of
edges (as identified with zero-crossings of the Lapla-
cian) in scale space. See [18], [19], [33], [40], and
[37].

Identifying spatial discontinuities is helpful in
many applications such as segmentation, optical flow,
stereo, and image reconstruction. The concept of a
“line process” is useful in studying these problems
as one of regularization. The binary line process
was introduced by Geman and Geman [10] where the
authors considered simulated annealing based algo-
rithms for achieving the global optimization. Since
then several modifications of the original scheme have
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been suggested. Blake and Zisserman [4] formulated
the same problem as minimizing an objective func-
tional which enforces smoothness while eliminating
the binary line process. See also Geiger and Gersosi
[9], Geman and Reynolds [12], and Rangarajan and
Chellappa [30]. Some of these recent works involve
analog or continuous line processes. The connections
between the line process approach to regularization
and outlier processes in robust statistics is explored
by Black and Rangarajan [3].

Common to all these algorithms is an objective
functional that:

(a) enforces closeness to the original data by includ-
ing terms such as (u — g)? or (Au — g)?

(b) promotes local smoothness away from edges by
including terms depending on ||Vul||

(c) limits the extent of the boundary.

For example, Richardson [31] and Richardson and
Mitter [32] consider minimizing functionals of the
form

E.(u,v) = /Q Blu— g)? + 2 ()| Vul?

— )2
a (vl + S5 ) @

where «, 3 and ¢ are weighting factors and v is a con-
tinuous function describing the boundary. Ambrosio
and Tortorelli [1], [2] have shown that, for ®(v) = v?
and ¥(v) = 1, this functional “I' — converges” as
¢ — 0 to the following form of the Mumford-Shah
functional:

— u— 2 2
E(u,v) = /Q Blu—g)® + /Q Il el o

where |K| is the length of the boundary K.

In a similar vein, Shah [36] proposed minimizing
a pair of functionals dependent on v and v: Given u
find v minimizing

2
v
V@) = [ alt=oPVull+ SIVel? + 3 (6)
Q p
where a and p are weighting parameters. Given v
find » minimizing

o2

v = [Ivap+ S @

where o is a weighting parameter.

The idea of the second functional is that the
boundary function v is approximately 0 inside re-
gions where we want v — ¢ to be small. Hence the
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division of (u — ¢)? by v? can be interpreted as a lo-
cal weighting that enforces close approximation of g
inside regions. Applying a steepest decent minimiza-
tion procedure to these functionals yields a pair of
coupled diffusion PDEs for v and v. This is also the
case for the functionals studied by Richardson and
Mitter.

However, as noted by Proesmans et al. [29],
Shah’s approach leads to blurring of the edges; this
can be partially offset by working with a modified
objective functional but some blurring still remains.

This blurring effect appears to be induced in part
by the inclusion of the boundary gradient term ||Vv||
in the objective functional, since this results in a dif-
fusion PDE for v. Inclusion of the boundary gradient
term also has the effect of “masking” the boundary.
That is, for a given approximation function u the op-
timal boundary function v is the solution of a non-
linear elliptic PDE and cannot be given explicitly.

In contrast, the objective functionals of the
Mumford-Shah type (4) as well as objective function-
als of the type considered by Geman and Reynolds
[12], which extend the work of Geman et al. [11], do
not include a boundary gradient term.

2.1 Reducible Objective Functionals

Consider the following generalized form of the
Mumford-Shah functional (4)

E(u,B):/Qr (1-B)? + B? (8)

where the residual term r depends on Au — g as well
as Vu. For our purposes we have found the following
form of 7 to be most useful

r = w;(Au — )% + wa||Vul| 9

but more general forms of r are also considered be-
low. Functionals of this type have the big advantage
that the optimal boundary function B can be found
explicitly for any nonnegative residual function r: in-
dependent of the form of r we show that, for a given
function u, the function B that minimizes E(u, B) is

given by
r

B = .

1+7r

We denote this optimal boundary function by B =
B(u). This allows us to eliminate B from the ob-
jective functional and (after some simple algebra) we

are led to the equivalent problem of minimizing the
functional E(u) = E(u, B{u)) given by

(10)

BE(u) = /Q r (11)

1+

It is interesting that this reduced functional is equal
to the L; norm of the optimal boundary function

B; that is minimization of the reduced functional
is really the same as minimizing the L; norm of B
subject to B =71/(1 4+ ).

The following lemma shows that there is a unique
boundary function that minimizes E(u, B).

Lemma 1 Let r = r(u,g,Vu) be nonnegative.
For fixed g and u, the objective functional defined
by

E(u,B) = / r (1-B)?+ B? (12)
Q
is minimized by setting B = r/(1+7). Moreover, for
any B
r
E(u,B) > 1
B> [ T (13)

with equality only for B =r/(1 +r).

Proof: See [14].
2.2 Numerical Implementation

Once the form of the variational functional has
been selected, the nontrivial problem of finding the
minimizing approximation u has to be addressed.
Typically the desired approximation is an equilib-
rium solution of a nonlinear diffusion PDE with cer-
tain boundary conditions. To illustrate, suppose that
we wanted to minimize a functional of the form

E(g,u) = /S;(u -~ 92+ Vu-Vu (14)

where g is the given image and u is an approximation
of g.

The minimizing approximation u for this func-
tional satisfies the ellpitic equilibrium PDE

Au = u-—g
Oufon 0 on 00

where Au is the Laplacian of v and du/dn denotes
the normal derivative on the boundary 92.

Numerically we can either solve for the equilib-
rium solution directly or follow u as a function of ¢
from an initial approximation, such as ug = g, by
integrating the diffusion PDE

u =g—u+Au (15)

subject to the Neumann boundary condition
Ju/On = 0 on 0. Starting from the initial con-
dition ug the image u evolves as t — oo toward the
equilibrium solution.

The numerical results for this paper were obtained
using the mixed norm objective functional

E:/ (w; (Au — g)? + ws||Vu)) (1 — B)? + BZ.
Q



Figure 1: Goldhill image: original (left) and after vari-

ational processing (right).

We used the l-norm for the smoothness term Vu
since this produced sharper edges in the approxima-
tion u than the 2-norm. Note that to avoid discon-
tinuous derivatives at Vu = 0 we use the modified
smoothness term (Vu - Vu + 8)!/? instead of ||Vul|.
With this modification, the Euler-Lagrange descent
method for this objective functional yields the follow-
ing PDE. For a given approximation u of g, define
the residual

r =w1(u—g)2+w2(Vu-Vu+6)1/2 (16)

then the descent PDE for u is given by

2wi(g —u)
S o)
+w,V - ((1?_72)2 (Vu - Vu + 6)‘1/2)

subject to the Neumann boundary condition.
Euler’s method was used to integrate the descent
PDE and we halted the integration when the de-
crease in the value of the objective functional became
less than a user supplied tolerance. Typically we ob-
tained good results by stopping when the decrease in
the objective functional from one Euler step to the
next was less than 1 percent of the current value of
the objective functional. This PDE descent proce-
dure may lead to a local minimum for the objective
functional. Other methods, such as simulated an-
nealing can be used to find a global minimum for

the objective functional with high probability, but
the intensive computational costs can result in unac-
ceptably long processing times. See [14] for details.

Example 1: Figure 1 (left) shows a detail from a
standard image entitled “Goldhill’. Applying the
variational boundary method above using (16) and
(18) produces the results in Figure 1 (right). Note
that the variational approach has suppressed the
small details in the image such as the sheep in the
background and the texture of the roof in the fore-
ground. The amount of smoothing and detail sup-
pression is controlled by the weight parameters w,
and ws in (16). Figure 2 shows the associated bound-
ary map.

To avoid the need to take many (usually hundreds)
of descent steps in minimizing the objective func-
tional it is helpful to prefilter the image. The next
section describes a prefilter that we have used [13]
succesfully.

3 Peer Group Averaging

Peer group averaging is a fast image processing
scheme that enhances objects of a given diameter
and area. The basic idea consists of two steps: to
enhance objects with n or more pixels 1) identify a
peer group of size n for each pixel 2) process the pixel
value based on the characteristics of the peer group.
There are many ways to select the peer group for
a given pixel. For example, see the earlier work by



Figure 2: Goldhill image variational boundary map.

Yaroslavsky [38] presenting an abstract formulation
of the group idea. In general, peer group members
should share common values. For a single image,
the peer group may be nearby pixels with similar
intensity values. For a sequence of images used in
determining optical flow fields, the peer group can
be nearby pixels (in time and space) with similar in-
tensity values and similar velocity values. In another
context, texture values may be assigned to each pixel
and then the peer group determined by nearness in
texture space.

In this paper we discuss peer groups based on in-
tensity nearness. For a given image g, select a win-
dow diameter d and a peer group number n. The
selection of d and n should correspond to the size of
the objects that are to be enhanced. The peer group
for a pixel is selected from the window centered at
the pixel and consists of the n pixels whose inten-
sity values are closest to the center value. Let u be
the average over the peer group. If we let A; be the
averaging operator at step k we can represent the
PGA iteration as ux41 = Agpug where ug = g. The
PGA iteration is nonlinear because of the peer group
selection.

Convergence of the PGA iteration is considered
by Deng et al. [6] who show that the PGA iterates
converge to an image that is constant on the inte-
rior regions of the image (the ‘irreducible’ subsets
of Theorem 2 in {6]). A comparison of PGA with
median filtering, the shock filtering method of Osher
and Rudin [26] and morphological filtering is given
in [6].

One of the main features of PGA is that it is a
discrete method designed for images rather than a
continuous method such as PDE or variational meth-
ods that are subsequently adapted to discrete im-
ages. This correspondence between the motivating
derivation and the final application means that the
parameters of PGA are closely aligned to the image
characteristics that we want to enhance. This is dealt
with below where discuss parameter selection.

3.1 Properties of PGA and Parameter
Selection

The most immediate property of PGA processing
is the invariance of objects for properly selected pa-
rameters. That is, if a group of n pixels all have the
same intensity value and the maximum distance be-
tween pixels is equal to 7, then by setting the peer
group number set equal to n and the window diam-
eter equal to d = 2r, the common intensity value
of this group of pixels is preserved under PGA pro-
cessing. This property is stable with respect to noise
in the following sense. If the intensity values of the
object are perturbed by noise that is small enough
in magnitude so that the membership in the peer
group of the object is not changed, then under PGA
processing the pixel values of the object converge in
one iteration to their collective average. This aver-
age value is equal to the true intensity value of the
object plus the average of the noise over the object.
Suppose that the noise is independently and iden-
tically distributed over the pixels with mean 0 and
standard deviation ¢. Then the mean of intensity
value assigned to the object under PGA processing
is the same as the true intensity value, with standard
deviation o/+/n where n is the number of pixels in
the object. From this we see that PGA processing is
very effective at damping out noise even for objects
with only a small number of pixels.

Edge enhancement algorithms have to balance
conflicting demands. On the one hand, edges of
important features should be strengthened without
changing their location. At the same time, we want
to smooth region interiors and reduce undesirable
edges associated with clutter and noise.

The extent to which these opposing goals are met

is determined by the choice of the algorithm param-
eters. For PGA there are two parameters: window
diameter d and peer group number n. The conflict
between preserving edges and smoothing unwanted
detail is reflected in the following observations:
1) If n is larger than the number of pixels in an ob-
ject O then O will be merged with a larger region of
size at least n. In this case edges associated with O
may be lost or relocated. Thus, to preserve edges in
an object O, use n < n(0O) where n(0O) is the number
of pixels in O.



2) To preserve straight lines of pixel width w, use
n < wd. This follows from identifying the line as an
object O and noting that O has at most wd pixels in
a window of diameter d.

3) To preserve corners of interior angle at least 7 /2,
identify O with a square corner with point at the
center of the window. Use n < d?/4.

4) For 1d signals, maximal smoothing without edge
loss for an object of size n(O) is obtained by setting
the window diameter equal to 2n(0O) —1 and the peer
group number equal to n(0). If the window diameter
is reduced below 2n(0) —1 while n = n(O), then pix-
els just outside the object will average over some of
the object pixels and edge blurring will occur. Tak-
ing n = n(0) and d = 2n(0) — 1 allows each pixel to
select a peer group entirely to the left or entirely to
the right (including the pixel itself) thus preserving
the edges.

5) As the ratio of the peer group number to the win-
dow area increases, the PGA approximation becomes
smoother.

3.2 Analytic Results on Parameter Se-
lection

The following lemma is useful in analyzing the
problem of selecting the peer group number.

Lemma 3 Let R be a region with n(R) pixels. If S;
and S, are subsets of R with both n(S;) and n(Ss2)
larger than n(R)/2, then S; and S have a nonempty
intersection.

Proof: See [6].

This lemma is related to the idea of local connectiv-
ity. We say that a region R in an image g is locally
connected for the peer group parameters d and n if
the peer group for any pixel 7 in R has nonempty
intersections with the peer groups of the immediate
neighboring pixels for each iteration of the PGA al-
gorithm for g. If a region R is locally connected
then there are no sharp edges in R since for any two
neighboring pixels the common portions of their peer
groups ensure that their final values under PGA are
related. The next two lemmas discuss conditions on
the PGA parameters that lead to local connectivity
for all or part of the image.

Lemma 4 If the peer group number n is large rel-
ative to the window diameter d, then the entire im-
age is locally connected under PGA. This occurs if
n > (d+1)/2 for 1d signals and if n > d(d +1)/2 for
2d images where we assume that d is odd.

Proof: See [6].

* From the above it is clear that for a fixed window
size, as the peer group number increases so does the
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smoothing. The next lemma discusses how the peer
group number affects smoothing within regions. The
idea here is to recover objects under PGA approxi-
mation in the sense that all the pixel values of the
object are locally connected to each other. However
we also want to avoid connections with pixels outside
the object. If n > n(0O) where n(Q) is the number
of pixels in the object O, then the peer groups for
pixels in O will be forced to include pixels outside
of O, resulting in edge blurring. On the other hand,
if the peer group number is too small, then slight
variations within O can lead to O breaking up into
several smaller unconnected regions under PGA.

To analyze this problem we will make the simpli-
fying assumption that the object O is well-separated
from the rest of the image in the sense that for any
peer group number n < n(0) and any pixel ¢ € O,
the peer group P(i) is a subset of O.

Lemma 5 Assume that O is an object in an image g
that is well-separated from the rest of g. If the peer
group number n satisfies n(0)/2 < n < n(O0) then
O is locally connected under PGA.

Proof: See [6].

3.3 Automatic Parameter Selection

Althougth the preceding observations make it pos-
sible to predict in a general way how the peer group
size affects the smoothing under PGA, it is still the
case that in most images we want to vary the peer
group size from point to point in order to enhance
some features and smooth others. For example, if we
use a 3x3 window then a peer group of size 6 pre-
serves straight edges but not corners. If we lower the
peer group number to size 4 then corners are also
preserved but we don’t achieve the smoothing that
we see with n = 6.

To get around this problem Deng et al. [5] in-
troduced the idea of using the Fisher discriminant to
select the peer group for each pixel. That is for a par-
ticular pixel let g1, g2, ... gm be the intensitiy values
over the window with g. the intensity of the central
pixel. Form the intensity differences d; = |g; — gc|-
Use the Fisher discriminant to separate these differ-
ences into 2 groups. That is maximize the objective
functional

lar — as]

F(k) =
() v + U2

over the peer group number k, where a; and v; are
the average and variance over the first group and
az,vy are the average and variance of the second
group.

This procedure produces excellent results with
only a slight increase in processing time to minimize
the Fisher discriminant.



Figure 3: Goldhill image: Fisher-PGA (left) and vari-

ational processing (right).

3.4 PGA as a Preprocessor for Varia-
tional Approximation

In general, one selects the original image g as ini-
tial data for the descent PDE associated with the
variational objective functional. However, this can
lead to the need to take many (hundreds) of descent
steps in order to achieve minimization. To avoid this
problem we used PGA as a preprocessing step to gen-
erate an initial image for the descent PDE; for details
see [13].

Example 2: We applied PGA to the Goldhill image
using automatic parameter selection via the Fisher
discriminant; see Figure 3 (left). Note that the
results are almost indistinguishable from the vari-
ational processing in Figure 3 (right). Since the
PGA processing is much faster than the variational
method we obtain considerable computational sav-
ings by using PGA alone or as a preprocessor for the
variational method.

3.5 Multiscale PGA

One problem with PGA is the limitation to small
windows for computational speed. In particular it
would be nice to be able to obtain uniform smooth-
ing over large regions without having to use large
windows and peer groups. To achieve this a multi-
scale PGA procedure similar in spirit to multigrid
methods for solving large systems of linear equations
has been developed [6]. The basic idea is to work
on several levels by defining windows with skips be-

tween pixels. At the first level is the usual window
with a distance of 1 between pixels; the next level
has a distance of 2 between pixels etc. Alternating
the PGA iteration between levels results in speeding
the passage of intensity information within regions.
Fortunately there is a simple way to implement this
procedure. For example to do a PGA iteration with
a distance of 2 between pixels in each window, one
simply has to subsample the image skipping every
other pixel and then run regular PGA on the sub-
sampled image. Subsampling this way transforms a
large image into 4 smaller images; after running PGA
on each of the smaller images they are then recom-
bined into a larger image. In this way we may do
one iteration of PGA on the large image followed by
one iteration on the smaller images and repeat until
the process converges. Convergence is usually quick
(3 to 5 iterations). Further subsampling of the small
images can be done if desired.

Example 3: Figure 4 (left) shows a detail from a
satellite image of an agricultural area. This image
is heavily contaminated by speckle and background
clutter. Applying multiscale PGA eliminates the
speckle in just 3 iterations as see in Figure 4 (right).

4 Shock Filtering

In shock filtering [34] [26],[27], intensity values
from the interior of regions move outward towards
the region edges along gradient lines. The convexity
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Figure 4: Agricultural image: original (left) and after

multiscale PGA (right).

of the intensity along the gradient direction deter-
mines the motion direction along the gradient and
this direction assignment means that when two re-
gions meet at an edge the image intensity will experi-
ence a jump. Thus the edges in the image correspond
to stationary shock fronts.

In shock filtering the maximum values of the im-
age intensity and the minimum values move out-
ward from the interior of their regions to meet at
the boundaries. This means that the contrast at the
edges is maximized. This also means that shock fil-
tering preserves the total variation of the original
image.

Shock filtering smooths in the sense that each re-
gion assumes a constant value. However, shock fil-
tering does not remove isolated noise such as salt-
and-pepper noise, as discussed by Osher and Rudin
in [26].

In its simplest form for 1d signals, shock filtering
uses the original signal ¢ as initial data for a nonlin-
ear convection equation:

uy = —sgn(Uzy) Uz

with u(z,0) = g(z). In this formulation we must be
careful to form derivative approximations from the
appropriate direction. Thus if intensity information
is to move from right to left, then we want u, to
represent the righthand derivative and we use a for-
ward difference to approximate u,. Similarly we use

a backward difference if we want intensity informa-
tion to move from left to right.

Consider a simple Euler update scheme for the
shock filter equation: let h be the time step and set
uP¥ = u; + hu,. If u is montone increasing at 7 and
uzz < 0in the sense that u;41 — 2u; +u;-1 < 0 then
the choice h = 1/2 leads to ul®* = (u; + ui+1)/2.
This is the same result we would get with PGA for
a peer group of size n = 2 because the convexity
condition u; 3 — 2u; +u;—; < 0 implies that |u;. —
u;| < |u; —ui—1]- Similarly, if u,, > 0 the choice h =
1/2 in the shock filter Euler update leads to the same
result as the PGA update: ul*" = (u;—1 + u;)/2.

This intersection of shock filtering and PGA for
particular parameter choices means that results for
one method apply immediately to the other. For ex-
ample, PGA with n = 2 for signals is total variation
preserving because the same is true for shock filter-
ing. However, the two methods are not the same
for other choices of parameters. In particular PGA
with larger peer group sizes automatically incorpo-
rates smoothing over the peer group and is able to
handle problems such as the isolated intensity spikes
of salt and pepper noise.

Example 4: This is a 1d signal example consist-
ing of two steps of different heights and widths to-
gether with Gaussian noise (see Figure 5a). Figure
5b shows the exact signal with noise added. Af-
ter using shock filtering we were able to reconstruct
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Figure 5: Exact step signal (a), noisy signal (b), shock

filter reconstruction (c)

the signal almost exactly (Figure 5c). We also note
that a similar example has been studied by Oman
[25] using a variety of approximation methods in-
cluding Sobolev H! reconstruction, total variation
approximation, low pass Fourier reconstruction, and
wavelet methods (in which denoising in the manner
of Donoho and Johnstone [7] was used for Harr and
Daubechies wavelets). The shock filtering results are
superior to (or approximately the same in the case of
the total variation method) the results reported by
Oman.

The correspondence between PGA and shock fil-
tering is helpful in analyzing the stability of an ac-
celerated version of PGA.

4.1 Shock Filtering and Accelerated
PGA

In analogy with the SOR method of solving large
systems of linear equations we can accelerate the it-
erative PGA method using

ub ! = wa* + (1 — w)u®

where @* denotes one regular PGA iteration applied
to u* and w is a scalar between 0 and 2. The stability
of this method is rather easily analyzed in the one
dimensional case because of the correspondence with
shock filtering.

For a convection equation of the form

Ut = CUzp (18)

the Courant stability condition (c.f. Ferziger [8]
p-237) relates the speed of transmission ¢ to the ratio
of the spatial step size dz and the temporal step size
dt for Eulers method:

dz
ol < . 19)
This can be interpreted as follows: |c| is the speed
with which information moves in the solution be-
cause the solution to the convection equation has the
form u(z,t) = u(z + ct). On the other hand, the ra-
tio dz/dt is the speed with which information moves
in the Euler approximation. The Courant condition
thus requires that for Euler’s method to be stable, in-
formation in the approximation must move at least
as fast as it does in the true solution. Applying this
to the shock filtering equation with dx =1 (i.e., one
nodal distance) and |¢] = 1 we have the stabiltity
condition

0<dt<1. (20)

We can connect the shock filtering stability condi-
tion with the accelerated PGA method as follows.
Under the same assumptions as for the shock fil-
tering case, i.e., u is montone increasing at ¢ and
Uzz < 0 in the sense that u;4; — 2u; +u;—1 < 0 then
[wir1 — us| < |u; — u;—1]. This means that the peer
group for n = 2 consists of the pixels 7 and 7 + 1.
This gives the peer group average as

Ui Uy

= 21)



Substituting this in the accelerated PGA scheme
gives )

accel

i wa; + (1 — w)u;

= w (W) + (1 —w)u;

_w w
= QUi + (1 - 5) Us.

In the analysis of the shock filtering we assumed
that uz, < 0. The case for uz, > 0 can be handled
in the same way except that the averaging is to the
left instead of the right. In any case we have the
result that the accelerated PGA method with n = 2
is stable for 1d signals if 0 < w < 2 since this range
is equivalent to the stability condition 0 < dt < 1 for
the shock filtering problem.

Accelerated PGA for images takes a particularly
simple form for w = 2 and n = 2. Indeed if w = 2 and
n = 2, then the update scheme for pixel (¢, j) consists
of simply selecting the pixel value from the window
that is closest in intensity to the central pixel’s in-
tensity:

u

accel

ij = Ugtj/ (22)

where (i',j') # (,j) minimizes |uy ;s — u;;| over the
window.

This means that the update does not require aver-
aging ; rather it takes the form of a substitution. For
this reason it is stable in the sense that the acceler-
ated pixel value must lie in the [Wmin, Wmaz] Where
Wynin and Wpe, are the minimum and maximum in-
tensities over the window. The only computation
involved is in selecting which pixel value to use in
the substitution. If we take the ‘window’ to be the
four closest pixels values |¢ — 4| + |j — 7’| = 1 then
this choice can be made at a cost of only two flops
per pixel: At interior points in the image

u

Step 1 Form the z forward difference matrix DX;; =
[u(z + la]) - U(’L,])'

Step 2 Form the y forward difference matrix DY;; =
lu(i, 5 +1) — ui, 5)|.

Using DX and DY we can determine the substitu-
tion values for each pixel using three comparisons per
pixel.

It has been our experience for noisy IR images that
only one accelerated PGA step is needed to remove
noise especially salt-and-pepper noise. The reason
for this lies in the fact that for w = 2 and n = 2
, accelerated PGA substitutes a nearby pixel value
rather than averaging. This eliminates isolated noise
spikes instead of reducing them by the averaging fac-
tor 1/n as would be the case in unaccelerated PGA
with w = 1.

6-11

5 Conclusion

PDE image processing is a new science that has
the potential to completely rework our understand-
ing of images and their structural content. This pa-
per has surveyed three methods in this area and their
relations to each other. Variational approaches such
as the Mumford-Shah method provide control over
image approximation, smoothing and boundary ex-
tent. These methods are very successful but require
significant processing time; as such they can benefit
from prefiltering methods such as peer group aver-
aging and shock filtering. The latter two methods
have a number of other applications. Surprisingly
they are equivalent for 1d signals even though they
are derived from completely different points of view
with shock filtering growing out of front propaga-
tion ideas and PGA being motivated by a desire to
work with images on a discrete rather than continu-
ous level. These three approaches should be viewed
not as competitive but rather as mutually supportive
with the method of choice determined by the process-
ing needs of the particular application.
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